
 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

1

Road-, Air- and Water-based Future Internet

Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number and Title D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

Confidentiality PU Deliverable type1 R

Deliverable File D6.5 Date 14.11.2018

Approval Status2 WP Leader, 1st

Reviewer, 2nd Reviewer
Version 1.1

Contact Person Damien Piguet Organization CSEM

Phone E-Mail Damien.Piguet@csem.ch

1 Deliverable type: P(Prototype), R (Report), O (Other)
2 Approval Status: WP leader, 1st Reviewer, 2nd Reviewer, Advisory Board

2

AUTHORS TABLE

Name Company E-Mail

Kakia Panagidi UoA kakiap@di.uoa.gr

Kostas Kolomvatsos UoA kostasks@di.uoa.gr

Vasil Kumanov Aberon Vasil.kumanov@aberon.bg

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Kiriakos Georgouleas HAI Georgouleas.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

Jason Ramapuran HES-SO jason-emmanuel.ramapuram@hesge.ch

Philippe Dallemagne CSEM Philippe.dallemagne@csem.ch

Damien Piguet CSEM Damien.Piguet@csem.ch

Giovanni Tusa IES g.tusa@iessolutions.eu

Miquel Cantero ROBOTNIK mcantero@robotnik.es

Ricardo Martins MST rasm@oceanscan-mst.com

REVIEWERS TABLE

Name Company E-Mail

Giovanni Tusa IES g.tusa@iessolutions.eu

Kakia Panagidi UOA kakiap@di.uoa.gr

DISTRIBUTION

Name / Role Company Level of

confidentiality3

Type of deliverable

Consortium PU R

3 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium

members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

3

CHANGE HISTORY

Version Date Reason for Change Pages/Sections

Affected

0.1 01.06.2018 First draft from previous iteration and D4.9 c. All

0.2 June – October

2018

Continuous and collaborative update following the

tests executions

All

0.3 01.11.2018 Version for internal review All

1.0 05.11.2018 Final version All

1.1 14.11.2018 Wrapped-up for submission All

4

Abstract:

The objective of this deliverable is to report about the integration and testing of the RAWFIE system

at the end of the third and last development cycle. It presents the status of the interface tests and the

verification tests as well as of the integration results. The document is the third release over the three

phases/cycles defined in the RAWFIE project. The tests reported in this document were executed

during the current iteration if they were not successful at the previous one or if they were newly

defined in D4.9.

This deliverable is based on the results of the tasks T6.1 and T6.2, on the work done in WP5, and on

the verification tests planning presented in D4.9.

Keywords: Integration, interface tests, verification tests, roadmap

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

5

Table of Contents-

Table of Contents-.. 5

List of Figures .. 9

List of Tables .. 10

Part I: Executive Summary .. 17

Part II: Main Section .. 18

1 Introduction .. 18

1.1 Scope of D6.5 .. 18

1.2 Definitions ... 18

1.3 Relation to other deliverables .. 18

2 Integration & Testing.. 19

2.1 Approach ... 19

2.2 Methodology ... 19

2.2.1 Tests reporting format .. 22

2.3 Integration of external components ... 22

2.3.1 Interoperability with external SFA clients through the SFA Aggregation

Manager 22

2.3.2 Integration of RAWFIE “newcomers” ... 23

2.4 Integration environment .. 30

2.4.1 Development Lifecycle of RAWFIE Tools and Services 31

2.4.2 Data repositories .. 32

2.4.3 Tools & techniques for integration .. 33

2.4.4 Message Bus .. 34

2.4.5 Integration of new UxVs .. 35

2.4.6 Integration of new Testbeds ... 35

2.5 Results of the Integration Test .. 37

2.5.1 Front-end integration ... 39

2.5.2 Middle tier integration ... 45

2.5.3 Testbed & UxV integration .. 50

2.6 Verification scenarios results .. 55

2.6.1 Frontend Tier ... 55

2.6.2 Middle Tier (Services and Communication components) 84

2.6.3 Testbed Tier ... 118

6

2.7 Benchmarking of different Message Bus topologies and configurations 154

2.7.1 Purpose ... 154

2.7.2 Scenarios and setup .. 154

2.7.3 Results .. 157

2.7.4 Discussion .. 160

2.8 Deviations with respect to D6.1, D6.3 and D4.9... 161

Part III: Conclusion & Roadmap ... 162

Part IV: Annex ... 163

Annex A Glossary ... 163

A ... 163

Accounting Service ... 163

Aggregate Manager .. 163

Avro .. 163

B ... 163

Booking Service ... 163

Booking Tool .. 163

C ... 163

Common Testbed Interface .. 163

Component.. 163

D ... 164

Data Analysis Engine ... 164

Data Analysis Tool ... 164

E ... 164

EDL Compiler & Validator .. 164

Experiment Authoring Tool.. 164

Experiment Controller .. 164

Experiment Monitoring Tool .. 164

Experiment Validation Service ... 164

M .. 164

Master Data Repository .. 164

Measurements Repository .. 165

Message Bus ... 165

Module .. 165

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

7

Monitoring Manager ... 165

N ... 165

Network Controller ... 165

L ... 165

Launching Service .. 165

R ... 165

Resource Controller .. 165

Resource Explorer Tool .. 165

Results Repository .. 165

Resource Specification (RSpec) ... 165

S .. 166

Schema Registry ... 166

Service .. 166

Slice Federation Architecture (SFA) .. 166

Subsystem ... 166

System .. 166

System Monitoring Service .. 166

System Monitoring Tool ... 166

T ... 166

Testbed.. 166

Testbeds Directory Service ... 167

Testbed Manager .. 167

Tool ... 167

U ... 167

Users & Rights Repository ... 167

Users & Rights Service... 167

UxV .. 167

UxV Navigation Tool ... 167

UxV node .. 167

V ... 167

Visualisation Engine ... 167

Visualisation Tool... 168

W .. 168

8

Web Portal .. 168

Wiki Tool .. 168

Annex B Requirements ... 169

References .. 171

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

9

List of Figures

Figure 1: Overview of software interfaces provided by Middle Tier Services and the Master

Database, and used by Frontend Tier module .. 20

Figure 2: Overview of software interfaces between Middle Tier components, and between

Middle Tier components and other system components.. 21

Figure 3: Testbeds Distribution ... 25

Figure 4: Flowchart of a new experiment .. 30

Figure 5: RAWFIE environment integration ... 31

Figure 6: RAWFIE clones for the development infrastructure .. 32

Figure 7: Tools for integration ... 33

Figure 8: Mirroring architecture .. 34

Figure 9: Experimental area of the University of Zaragoza displayed in the Experiment

Authoring Tool and the Visualization tool .. 37

Figure 10: Round Trip Time metrics in scenario A ... 157

Figure 11: TX metrics in Scenario A ... 158

Figure 12: Mean Time for consuming messages in Scenarios B and C 158

Figure 13: Mean Time for leader broker to serve messages in Scenarios B and C 159

Figure 14: Mean Time for leader broker to serve messages in Scenarios B and C 160

10

List of Tables

Table 1: interface interaction matrix .. 38

Table 2: Interface types used in interface testing... 39

Table 3: Test of the Web portal interfaces ... 40

Table 4: Test of the Wiki Tool interfaces .. 40

Table 5: Test of the Resource explorer interfaces ... 41

Table 6: Test of the Booking Tool interfaces .. 42

Table 7: Test of the Experiment Authoring Tool interfaces .. 42

Table 8: Test of the Experiment Monitoring Tool interfaces .. 43

Table 9: Test of the System Monitoring Tool interfaces ... 43

Table 10: Test of the Visualisation Tool interfaces ... 43

Table 11: Test of the Data Analysis Tool interfaces.. 44

Table 12: Test of the Accounting Tool interfaces ... 44

Table 13: Test of the EDL Compiler and Validator interfaces .. 45

Table 14: Test of the Experiment Validation Service interfaces ... 45

Table 15: Test of the User & Rights Service interfaces... 45

Table 16: Test of the Booking Service interfaces .. 46

Table 17: Test of the Launching service interfaces ... 47

Table 18: Test of the Experiment Controller interfaces ... 47

Table 19: Test of the Data Analysis Engine interfaces .. 48

Table 20: Test of System Monitoring Service interfaces ... 48

Table 21: Test of the Testbed Directory Service interfaces ... 49

Table 22: Test of the Visualisation Engine interfaces ... 50

Table 23: Test of the Tesbed Manager interfaces .. 51

Table 24: Test of the Monitoring Manager interfaces ... 52

Table 25: Test of the Resource Controller interfaces .. 53

Table 26: Test of the UxV Node interfaces ... 54

Table 27: Test of the Network Controller Interfaces ... 55

Table 28: Test of the Proximity Component interfaces ... 55

Table 29: Verification test of the Web Portal - Login/ Logout .. 56

Table 30: Verification test of the Web Portal – Language selection 56

Table 31: Verification test of the Web Portal – User management ... 57

Table 32: Verification test of the Wiki Tool – Component Help .. 58

Table 33: Verification test of the Wiki Tool – Editing .. 58

Table 34: Verification test of the Browse testbeds and UxVs and start booking 59

Table 35: Verification test of the Booking Tool Calendar View and its display options 60

Table 36: Verification test of the Booking Tool Calendar View Interactions 62

Table 37: Verification test of the Booking Tool Create Reservation 64

Table 38: Verification test of the Booking Tool Edit Reservation Actions 65

Table 39: Verification test of the Booking Tool SFA integration ... 66

Table 40: Verification test of the in-Textual Editor Experiments definition 67

Table 41: Verification test of the Textual Editor Experiments Update 68

Table 42: Verification test of the in-Visual Editor Experiments Define 69

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

11

Table 43: Verification test of the in-Visual Editor Experiments Update 70

Table 44: Verification test of the Editor switching .. 70

Table 45: Verification test of the experiment Launchings... 71

Table 46: Verification test of the experiment Launchings... 72

Table 47: Verification test of the Visualisation of experiment status 73

Table 48: Verification test of the canceling of experiments .. 73

Table 49: Verification test of the Visualisation of system and UxV health status 74

Table 50: Verification test of the Filtering based on roles 74

Table 51: Verification test of the Administrative Monitoring View 75

Table 52: Verification test of the User request handling ... 76

Table 53: Verification test of the Geospatial data handling .. 77

Table 54: Verification test of the Geospatial data modification .. 77

Table 55: Verification test of the Experiment Controller communication 78

Table 56: Verification test of the Visualization Tool Interaction .. 78

Table 57: Verification test of the Indoor maps .. 79

Table 58: Verification test of the resources information retrieval and resources search 84

Table 59: Verification tests for adding, editing or removing a testbed facility 85

Table 60: Verification test of the registration or removal of a new UxV node into a testbed

facility .. 86

Table 61: Verification test of the testbeds information retrieval and testbeds search 87

Table 62: Verification test of the in-Textual Editor Experiments definition 91

Table 63: Verification test of the Textual Editor Experiments Update 92

Table 64: Verification test of the in-Visual Editor Experiments Define 93

Table 65: Verification test of the in-Visual Editor Experiments Update 94

Table 66: Verification test of the Editor switching .. 94

Table 67: Verification test of the experiment Launchings... 95

Table 68: Verification test of the experiment Launchings... 95

Table 69: Verification test of the Users & Rights Service login checking 96

Table 70: Verification test of the Users & Rights Service roles/rights checking 96

Table 71: Verification test of the user rights checks.. 97

Table 72: Verification test of Booking Service add reservation functionality 98

Table 73: Verification test of Booking Service edit reservation functionality 99

Table 74: Verification test of Booking Service approve reservation functionality 100

Table 75: Verification test of Booking Service reject reservation functionality 101

Table 76: Verification test of Booking Service delete reservation functionality................... 102

Table 77: Verification test of Booking Service retrieve reservation(s) functionality 102

Table 78: Verification test of Booking Service check for conflicts functionality 103

Table 79: Verification test of Booking Service simultaneous reservations support 103

Table 80: Verification test of the Launching Service manual start (short term launching) ... 104

Table 81: Verification test of the Launching Service schedule (long term launching) 104

Table 82: Verification test of the Launching Service cancellation request 106

Table 83: Verification test of Launching Service simultaneous launching capability 107

Table 84: Visualisation engine user request handling ... 107

Table 85: Visualization engine geospatial data modification .. 108

12

Table 86: Visualization engine camera interaction .. 108

Table 87: Verification test of the System Monitoring ... 112

Table 88: Verification test of the System Monitoring Problem Notifications 113

Table 89: Verification test of sending notification on planned downtime............................. 114

Table 90: Verification test of the accounting data collection .. 115

Table 91: Verification test of the account charging ... 115

Table 92 Verification test of experiment forwarding .. 116

Table 93 Verification test of handling status updates of a running experiment 117

Table 94 Verification test of supporting experiments execution in multiple testbeds 118

Table 95: Verification test of UxV health status ... 119

Table 96: Verification test of testbed health status .. 120

Table 97: Verification test of network interface listing ... 121

Table 98: Verification test of network interface management ... 122

Table 99 Verification test of starting/cancelling an experiment .. 123

Table 100 Verification test of the command the control loop ... 124

Table 101: Verification test of Proximity component Backup communication 125

Table 102: Verification test of UxV retrieval using the communication system of the

Proximity component ... 126

Table 103: Verification test of Swarm motion using the Proximity component 126

Table 104: Verification test of experiment handling from testbed manager 128

Table 105: Verification test for creating and updating a testbed in the master database 129

Table 106: Verification test for creating, updating and deleting a testbed area in the master

database .. 130

Table 107: Verification test of creating, updating and deleting a resource in the master

database .. 131

Table 108: Verification test for creating, updating and deleting a sensor in the master

database .. 132

Table 109: Verification test for creating, updating and deleting a network interface in the

master database .. 133

Table 110: Verification test for assigning a network interface to a resource in the master

database .. 134

Table 111: Verification test of Aggregate Manager create, update and delete operations 135

Table 112: Verification test of services running at testbed .. 136

Table 113: Verification test of testbed statistics display ... 137

Table 114: Verification test of UxV Return to base .. 138

Table 115: Verification test of the ability of the UxV to follow a route 140

Table 116: Verification test of Acquire sensor samples .. 141

Table 117: Verification test of Fidelity to commands ... 143

Table 118: Verification test of Continuous communication .. 144

Table 119: Verification test of Continuous communication .. 145

Table 120: Verification test of Secure communication ... 146

Table 121: Verification test of Real-time communication .. 147

Table 122: Verification test of UxV Device Management .. 148

Table 123: Verification test of the UxV connection .. 149

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

13

Table 124: Verification test of Sensor Data Acquisition 1 .. 150

Table 125: Verification test of Sensor Data Acquisition 2 .. 151

Table 126: Verification test of Waypoints Processed .. 153

Table 127: Sync and Burst cased tested in scenario A .. 157

Table 128: Requirements considered for the integration ... 169

14

The following table gives the abbreviations used across the RAWFIE projects in the

documents and deliverables.

 Table 1: Common abbreviations

Abbreviation Meaning

3D three-dimensional space

ACL Access Control List

AGL Above Ground Level

AHRS Attitude and Heading Reference System

AJAX Asynchronous JavaScript and XML

AM Aggregate Manager (of SFA)

AP Access Point

API Application Programming Interface

API Application programming interface

AT Aerial Testbed

AUV Autonomous underwater vehicle

B-VLOS Beyond Visual Line Of Sight

CA Certification Authority

CAA Civil Aviation Authority

CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological

CEP Circular Error Probability

CPU Central Processing Unit

CSR Certificate Signing Request

DETEC Department of the Environment, Transport, Energy and Communication

DGCA Directorate General of Civil Aviation

DoA Description of Actions

EASA European Aviation Safety Agency

EC Experiment Controller

ECC Error Correction Code

ECV EDL Compiler & Validator

EDL Experiment Description Language

EDL Experiment Description Language

EER Experiment and EDL Repository

EU European Union

E-VLOS Extended Visual Line Of Sight

EVS Experiment Validation Service

FIRE Future Internet Research & Experimentation

FOCA Federal Office of Civil Aviation

FPS Frames Per Second

FPV First Person View

GAA German Aviation Act

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

GUI Graphical user interface

HD High Definition

HTTP Hypertext Transfer Protocol

HW Hardware

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

15

IAA Irish Aviation Authority

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDE integrated development environment

IFR Instrument Flight Rules

IP Internet Protocol

ISO International Standards Organization

JDBC Java Database Connectivity

JSON JavaScript Object Notation

KPI Key Performance Indicator

KPI Key Performance Indicator

LBL Long Baseline

LDAP Lightweight Directory Access Protocol

LS Launching Service

MEMS MicroElectroMechanical System

MM Monitoring Manager

MSO Multi Swarm Optimization

MT Maritime Testbed

MOM Message Oriented Middleware

MVC Model View Controller

NAT Network Address Translation

NC Network Controller

NF Non Functional

ODBC Open Database Connectivity

OEDL OMF EDL

OMF cOntrol and Management Framework

OMF Orbit Management Framework

OML ORBIT Measurement Library

OS Operating System

OTA Over The Air

P2P Point to Point

PSO Particle Swarm Optimization

PTZ Pan Tilt Zoom

RC Resource Controller

RC Resource Controller

RE Requirement Engineering

REST Representational state transfer

RIA Research and Innovation Action

ROS Robot Operating System

ROV Remotely Operated Vehicle

RPA Remotely Piloted Aircraft

RPAS Remotely Piloted Aircraft System

RPS Remotely Piloted Station

RSpec SFA Resource Specification

SaaS Software as a Service

SAML Security Assertion Markup Language

SFA Slice-based Federation Architecture

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Simple Query Language

SSO Single-Sign-On

SVN Apache Subversion

TM Testbed Manager

16

TMS Testbed Manager Suite

TP Testbed Proxy

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UI User Interface

UML Unified Modelling Language

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UxV Unmanned aerial/ground/surface/underwater Vehicle

VE Visualization Engine

VT Vehicular Testbed

VT Visualization Tool

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

WSDL Web Services Description Language

XMPP Extensible Messaging and Presence Protocol

Table 2 gives the notations commonly used across the present document.

Table 2: Notations

Notation Description

DX.Y Deliverable X.Y from the DoW

MSX Milestone X from the DoW

WPX Work package X from the DoW

OCX Open Call X

AX.Y Activity number Y in Phase X

DLX.Y Deadline number Y in Phase X

MX Project month number X

A glossary is located at the end of this document in Annex, p. 163.

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

17

Part I: Executive Summary

The objective of this deliverable is to report on the integration level obtained for the

RAWFIE platform after the third development iteration and to give the results obtained

during the tests of the interfaces of the RAWFIE components and of their integration into a

unified and operational system. It presents the status of the interface tests and the verification

tests as well as of the integration results, including the technicalities required for the ensuring

that the platform can be used by third parties. The document also lists the principles and

procedures related to the integration of third parties (UxV providers, experimenters) to the

platform.

The document is organised into 4 parts. The second part (Part II) is the main section, which is

structured into two Chapters. Chapter 1 presents the scope of the document, some definitions

and abbreviations together with the relation to other RAWFIE deliverables. Chapter 2

describes the various aspects of the integration and testing of the RAWFIE system. It

describes the approach and methodology used for describing, performing and reporting the

tests and integration verification. It is followed by the integration with external entities

(mainly SFA), the integration setup and the results of the tests of the interface and the

verification tests performed on the RAWFIE components and system. To make sure that the

current RAWFIE system meets the basic performance requirements, a section presents the

measured performance of the kafka message bus in different setups. A conclusion is drawn in

Part III to assess the overall maturity of the platform in the last iteration of its development.

Annexes are in Part IV of the report.

18

Part II: Main Section

1 Introduction

1.1 Scope of D6.5

The scope of this document is to present the final results of the tests of the operational

platform, together with the status of the component's integration after the 3rd and last project

development iteration cycle.

1.2 Definitions

This document makes use of a number of specific terms, which the RAWFIE team

understands as defined below:

 Verification of a system is the task of determining that the system is built according

to its specifications (functionalities developed according to requirements and design

specifications);

 Validation is the process of determining that the system actually fulfils the purpose

for which it was developed (according to the specification);

 Evaluation reflects the acceptance of the system by the end users and its performance

in the field, which eventually translates into usefulness (always according to user

needs and / or performances in the field against realistic scenarios).

1.3 Relation to other deliverables

The work performed in WP6 relies on the outcomes of WP3 and WP4, as well as on WP5

activities, which performed the development and integration of components, according to the

roadmap described in D2.2.

D6.5 is an update of D6.3. From a programmatic point of view, it provides a feedback to

WP8 Open calls in the form of an assessment of the system readiness for its operation by end

users for the identification of final corrections needed.

D6.5 refers to D4.8 and D4.9 (and their earlier iterations) for many aspects, including the

architectural concepts, the data model and the components interactions. The testing of the

components interfaces and their integration is based on the architecture and design

deliverables of WP4, and specifically on the verification scenarios and planning presented in

deliverable D4.9. Modifications from the abovementioned scenarios and planning, when

present, will be highlighted in the rest of the document.

In spite of its coarse granularity, D2.2 forms the basis for checking the completeness of D6.5

coverage. D2.2 specifies the different rounds of development and the objectives in terms of

function, environment, etc. which directly defines the boundaries of the prototype integration

or related tasks (see sections 3.3 to 3.10). D6.5 reports on the integration steps and the

verification of components once combined with the rest of the RAWFIE system, before the

submission of this system to the validation process.

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

19

D6.5 refers explicitly to the Verification scenarios defined in D4.3, D4.6 and D4.9 (section

5.1) for the component testing at a high level, which gives emphasis to the integration process

and therefore on the interfaces, dependencies and interactions between components. D6.5

reflects this emphasis, focusing on the results of the integration process and on the interfaces,

dependencies and interactions between components. D6.5 deals with, and presents, the

interface testing results and the high-level testing results, according to verification templates

found in D4.6 and D4.9.

As D6.5 is an iteration of D6.3, some verification tests that did not produce completely

successful results at the time of writing D6.3 were re-executed for the current iteration and

their results are given in this deliverable. Some other tests or parts of tests were removed

because they are no longer relevant due to architectural changes. This is clearly indicated

beside all concerned test items.

2 Integration & Testing

2.1 Approach

The objective of the Integration & Testing activities, whose results are presented in this

deliverable, is to produce the third version of the end-to-end operational prototype of the

RAWFIE platform. Following the time-plan defined for Phase 2 of the Integration & Testing

roadmap (D2.2), the results reported in this deliverable reflect the integration and testing

work carried out by project’s partners during the 3rd technical iteration.

Since the approach does not substantially differ from what described in deliverable D6.3

(Integration & Testing during the 2nd iteration), the reader is also invited to refer to Section 2

of D6.3 and its predecessor D6.1 for further details.

As a result of the 2nd Integration & Testing iteration, some suggestions for modifications and

improvements to RAWFIE components and interfaces were derived. These suggestions,

together with the outcomes of the implementation activities from WP5, and the third version

of the requirements from D3.3, have triggered modifications and improvements in the design

of components’ functionalities and interfaces, being used as inputs for the third version of the

RAWFIE architecture (D4.7) and components’ specification (D4.8). In turn, the new version

of the components’ design, was used for defining new interface tests and verification

scenarios, or for updating the existing ones in D4.9. D4.9 is therefore the main reference

document for the integration and verification tests reported in this deliverable.

2.2 Methodology

Integration testing includes activities where the different software components of the system

are combined and tested as a group, to verify both the communication interfaces and end-to-

end workflows and functionalities. The reader is invited to refer also to D6.1, Section 2,

where further details of the methodology are explained. Here we highlight that, for the

purposes of integration testing, the following tests categories are considered in the integration

and verification plan (D4.6, D4.9) and, as a consequence, in the present deliverable:

20

 Testing of components interfaces: this kind of tests are performed for all

implemented components that provide a software interface to other components (via a

REST or SOAP / RPC API) or are capable to send/receive data from Message Bus. As

an example of the communication interfaces that need to be verified during system

components’ integration, following

 Figure 1 and Figure 2, taken from the D4.8, provide an overview of the several

interactions (through different communication technologies) between Frontend Tier

components and Middle Tier components, and between Middle Tier components and

other system components, respectively.

 Execution/Testing of verification scenarios: This involves the execution of all the

verification scenarios defined in D4.9, Section 5.1 and can comprise tests whose aim

is mainly to verify individual components’ functionality – although in most cases they

have as prerequisite the existence of other components – as well as end to end

scenarios, where several system components are involved

Figure 1: Overview of software interfaces provided by Middle Tier Services and the Master

Database, and used by Frontend Tier module

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

21

Figure 2: Overview of software interfaces between Middle Tier components, and between Middle Tier components and other system components

22

2.2.1 Tests reporting format

Results of the verification tests are reported using two different reporting templates, for

interfaces testing and for the verification scenarios, respectively. These templates are

described in Section 2.2.1 of deliverable D6.1.

2.3 Integration of external components

The integration of new tools and services for the extension of the experimentation

capabilities, can be easily realised thanks to the open architecture of RAWFIE, based on a

mix of SOA principles (therefore the availability of RPC and REST API) and the decoupling

of components and functionalities through the asynchronous communication via the Message

Bus.

Specific technical constraints are defined for the integration of new vehicles, testbeds and

experimenters, which have been described in the D4.8 in the form of technical guidelines for

third parties. In the following subsection 2.3.3 the actual processed to be followed for new

testbeds and UxVs integration from both the technical and operational standpoint are reported

in details, also considering what has been already done in the open calls cycles for new

software, hardware and experimenters integration.

In general, integration procedures for newcomers are available on the project Redmine/Wiki

tool in the Work Package 8 section, which is accessible to newcomers unlike the other work

package sections which are restricted to the consortium. Software examples are available in

Gitlab space shared only with the experimenters.

2.3.1 Interoperability with external SFA clients through the SFA Aggregation

Manager

From the technical standpoint, interoperability with external SFA clients is realised through

the implementation of a modified version of the SFA Aggregation Manager (AM) at Testbed

level, and its integration with existing RAWFIE components. The modified SFA Aggregation

Manager is provided in the context of the SAM proposal, who joined the project after the 1st

Open Call. It is therefore part of the SAM software module, which will be deployed on each

connected Testbed in order to handle, among the others, the reservation process of the

respective resources. Please also refer to D4.7 and D4.8 for more details about the

components and functionalities of SAM software module.

The following are the main integration scenarios that realise the SFA principles:

 Adding/Editing/Deleting of resources. This action will always be performed

through the Testbed Manager admin UI. In this scenario the RAWFIE Testbed

Manager component will act as the gateway to the SFA Aggregation Manager, since

it will forward the modification requests to both the SFA Aggregation Manager

using the provided REST API (for updating the local Triple Store DB) and to the

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

23

Testbed Directory Service through its REST API, for updating the same information

in the centralised Master Data Repository of RAWFIE

 Listing / searching of resources. This action can be performed through the

RAWFIE platform as well as through external SFA enabled clients / GUI (e.g.

MySlice). In the former case, the RAWFIE Resource Explorer Tool and, in turn, the

Testbed Directory Service components will be used to search and visualise all or

specific UxV resources in the given Testbed. In the latter case, external SFA clients

will directly call the SFA Aggregation Manager through the provided REST API.

The SFA AM will in turn perform semantic queries to the local Triple Store DB.

 Booking requests. This action can be performed through the RAWFIE platform as

well as through external SFA enabled clients / GUI (e.g. MySlice). In the former

case, the RAWFIE Booking Tool will forward the booking request, through the

Booking Service, to the SFA Aggregation Manager using the provided REST API

and to the RAWFIE Master Data Repository, so that all repositories will be

synchronised. In the latter case, external SFA clients will directly call the SFA

Aggregation Manager through the provided REST API and the SFA AM will in turn

perform the booking of resources in the local Triple Store DB. The Booking Service

will also periodically synchronise itself with the SFA Aggregation Manager, in order

to ensure consistency between the reservations made using the SFA interface (and

therefore the content of the Triple Store DB), and the ones made using the RAWFIE

Booking Tool (Master Data Repository).

2.3.2 Integration of RAWFIE “newcomers”

RAWFIE aims to create a federation of different testbeds that will work together to make

their resources available under a common framework. Specifically, it aims at delivering a

unique, mixed experimentation environment across the space and technology dimensions.

RAWFIE integrates numerous testbeds for experimenting in vehicular (road), aerial and

maritime environments. Vehicular Testbeds (VT) will deal with Unmanned Ground Vehicles

(UGVs) while Aerial Testbeds (AT) and Maritime Testbeds (MT) will deal with Unmanned

Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs), respectively. All these

items are managed by a central controlling entity, which will be programmed per case and

fully overview/drive the operation of the respective mechanisms (e.g., auto-pilots, remote

controlled ground vehicles).

In terms of integration, different actors (UxV providers, experimenters) follow different

processes in order to join RAWFIE federation based on their needs. Each actor receives

specific guidelines that ensure the correction remote operation of the RAWFIE platform.

2.3.2.1 Integration of a new testbed

RAWFIE searches for improvements in terms of new facilities (testbeds) that could host

experiments and devices. First of all newcomers must specify:

 What type of testbed is, i.e. indoor or outdoor

 What type of devices it can host, i.e UAVs, USVs and UGVs

24

In the RAWFIE project testbeds can host more than one type of devices.

2.3.2.1.1 Requirements

The next step for the testbed providers is to ensure testbeds' compliance with the RAWFIE

hard requirements in order to host devices and experiments. Each facility should provide

closely monitored and controlled environments and should be able to:

 receive, inspect, assemble/fix and store UxVs

 provide emergency services (i.e., crash, fire or rescue) and recovery processes

 define minimum experimentation time

 have the appropriate equipment, both ground-based and mobile, to monitor and

control vehicles, including

o Radar facilities or other kinds of equipment (e.g. cameras) for tracking and

surveillance

o Telemetry facilities such as antennas, receivers, display instrumentation

systems

o Command uplink and optical tracking facilities

o Premier digital photographic and video services including operation of still

cameras, high speed and video systems for Range Safety support, surveillance,

and post-launch analysis (e.g. failure analysis)

 a Person responsible in the field is needed with Visual Line of Sight

(VLOS) during experiments' execution

o High bandwidth for supporting experiments with swarm of devices

 If a facility is dedicated to UAVs, then:

o The altitude must be more than 50 meters and below of 150m

o Must be away from populated areas

o Must provide remote pilot with VLOS, which shall be located at not more than

200m

o Must provide geofenced area with anti-collision systems

2.3.2.1.2 RAWFIE Technical Support

When the hard requirements listed before are fulfilled, and testbed facility joins the

federation, then a contact point form the technical team of RAWFIE is assigned to the

newcomers (testbed responsible/operators). Regular skype calls between the contact points

and the new beneficiaries are established once-per-week for resolving questions and

efficiently overview the testbed integration. RAWFIE team provides the testbed operators

with a manual for using the web portal and a software package that contains all testbed

software components (downloadable from the RAWFIE tickets and activities' tracking tool,

based on Redmine, in the WP8 section). The Testbed Manager component provides a GUI for

the configuration of the testbed and the insertion of the testbed vehicles (screenshots are

given in deliverable D5.5, section 4.5.1). Testbed operators have access and control to the

following aspects from the RAWFIE Portal:

 Define their preferable dates and times when experimenters can run experiments

 Accept/Reject a booked experiment in their testbeds

 Overview the experiments that will be conducted using their testbeds

 Visualize a running experiment and cancel if it necessary

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

25

All UxVs are operating in RAWFIE Virtual Private Network. RAWFIE provides all the

necessary certificates in order to establish a VPN inside the infrastructure.

While the former idea within the project was to allow testbed owners to develop their own

version of the testbed components (as it is currently written in the D4.8), subsequently the

consortium decided that this will be forbidden, in order to increase compliance, safety and

simplicity. Therefore testbeds' owners must use the software developed and provided by

RAWFIE within their testbeds.

As long as the project is running, the contact point that will support testbeds representatives is

the project coordinator UOA. Once the project is completed, the primary contact point will be

established by the organisation that takes over the RAWFIE platform according to the

federation policy established in Work Package 2 and deliverable D2.3 – Federation Policy.

2.3.2.1.3 Training

New testbed managers must participate in webinar organized by UoA about RAWFIE ethics

requirements. Ethics requirements are detailed, and the strategies to mitigate the risk

explained. The main focus of the webinar is the dual-use requirement, but the misuse

requirements are also covered and instructions about how to deal with each of them are given.

2.3.2.1.4 Integrated testbeds

During the project lifecycle, six (6) testbeds were integrated in RAWFIE. These testbeds are

operational and equipped with different types of devices.

Figure 3: Testbeds Distribution

2.3.2.2 Integration of new vehicles

The basic idea behind the RAWFIE effort is the automated, remote operation of a large

number of robotic devices for the purpose of assessing the performance of different

26

technologies in the networking, sensing and mobile/autonomic application domains.

RAWFIE considers three kinds of vehicles; UGVs, USVs and UAVs. The project aims to

feature a significant number of UxV nodes in order to establish an extended test infrastructure

for RAWFIE related experimentation purposes. All these items will be managed by a central

controlling entity which will be programmed per case and fully overview/drive the operation

of the respective mechanisms (e.g., auto-pilots, remote controlled ground vehicles). Internet

connectivity will be extended to the mobile units to enable remote programming (over-the-

air), control and data collection.

2.3.2.2.1 Requirements

RAWFIE promotes the experimentation under different technologies of devices (UxVs) that

are equipped with different sensors, cameras and network interfaces. The following

requirements have been defined on D3.3 to secure the interoperability with the RAWFIE

platform, control units and testbeds:

 Compliance of UxVs to RAWFIE specification and interfaces

o to be able to operate in a RAWFIE Tesbed, a RAWFIE UxV interacts with the other

Testbed entities (proxy, controllers, other UxV’s). As such the UxV shall conform to

the RAWFIE global architecture and conceptual components defined in D4.8

 Each UxV shall have a unique Identification code

 Each UxV shall be able to operate autonomously

 Each UxV node shall ensure a minimum autonomy of 15-30 minutes (UXV-NOD-002/D3.3)

 Each UxV node shall ensure payloadshall be able to carry additional payload equipment of at

least 0.5 to 1 kg in weight. (UXV-NOD-002 /D3.3)

 UxVs shall provide the capability of taking manual remote control of the UxVs(UXV-NET-

001/D3.3)

 UxV network interface management:

o each UxV shall be able to manage (detect/configure/control/use) the network

interfaces installed, during the setup and execution of a mission (UXV-INT-

014/D3.3)

 UxV communication interoperability with RAWFIE (incoming/outgoing):

o each UxV shall be able to receive/send and decode/encode the incoming/outgoing

messages from the testbed and deliver them to the relevant on-board component.

 Each UxV node shall tag location and timing capability to each sensor readings (SSL2)

 UxV location and sensor data shall be made available to the experimenter

 UxVs shall be capable to revert to a safe mode

2.3.2.2.2 RAWFIE Support

When the requirements are fulfilled and a new UxV joins the federation, then a contact point

form the technical team of RAWFIE is assigned to the newcomer. Regular skype calls

between the contact points and the new beneficiaries are established once-per-week for

resolving questions and efficiently overview the integration of the UxV in the testbeds.

RAWFIE team provides access to the Gitlab that is created in the project. Examples for the

UxV on-board software to interact with the message bus are shared with the third parties.

When the integration with Message Bus is completed and tested, the device can be delivered

to the testbed. For UAVs a flight insurance for the devices is needed (for ROC2 and ROC3

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

27

devices these insurances are provided by the coordinator). When the devices are delivered to

the testbeds, a series of validation scenarios – the Operational Safety Scenarios described in

D4.9 - are conducted in order to ensure the safe operational behaviour of the UxVs. For this

purpose, one or more nodes of the same type and manufacturer will be always verified.

The main failsafe topics addressed by the emergency scenarios are listed below4:

 Communication link failsafe

 Battery/fuel failsafe

 GCS5 failsafe (related to failure in Resource Controller, Testbed Manager, etc.)

 Geofencing issues (Testbed Boundary breaching)

 Localization issues

 Collision issues

For each of these main topics identified, specific Operational Safety Scenarios have been

defined by the consortium and are described in Section 6.6 of deliverable D4.9. Those tests

ensure that any new vehicle complies with the platform rules, that it is properly interfaced

with its testbed through the Message Bus and that it understands the minimal set of

commands related to its category. A checklist that summarises the whole new vehicle

integration procedure with pointers to the necessary information is available on RAWFIE

Wiki tool.

As long as the project is running, the contact point for support is the project coordinator

UOA. Once the project is completed, the primary contact point will be established by the

organisation that takes over the RAWFIE platform according to the federation policy

established in Work Package 2 and deliverable F2.3 – Federation Policy.

2.3.2.2.3 Training

New UxVs manufacturers must participate in webinar organized by UoA about RAWFIE

ethics requirements as described in 2.3.3.1.3.

2.3.2.2.4 Integrated UxVs

Below all the devices delivered to RAWFIE testbeds and allocated in different countries are

listed.

UxV\Testbeds Type HMOD HAI Catuav CESA RTART DFKI Total

PLADYPOS USV 3 7 10

FLEXUS USV 10 10

NIRIIS USV 3 7 10

4 It must be noted that the failsafe topics addressed by the emergency scenarios are considered in the

context of the RAWFIE system. Most UxVs (especially UAVs) provide inherent failsafe mechanisms related to

most of these topics. These mechanisms should be regarded as an extra safety umbrella in case the RAWFIE

specific ones fail
5 GCS= Ground Control Station

28

VENAC UAV 2 6

4

 12

DOGMA Fixed

Wings

2 4 2 2

 10

FIBLE UGV 5

 2 3

 10

ITCROWD UAV 4

 4 4

 12

Total 29 10 12 6 3 14 74

2.3.2.3 Experimenters

Experimenters of testbed and UxV resources can be categorized in three main groups based

on the experiments' type:

 Experimentation of UxVs hardware components:

o Integration of new hardware to the vehicles of an existing testbed is required

by most of the experimenters. New hardware is represented by new sensors,

alternative communication interfaces for networking-related experiments,

supplementary computer, etc.

 Experimentation of UxVs software:

o Experimenters need to test network algorithms based on different allocation of

devices in space. This type of experiments handle UxVs as Access Points that

are enhanced with mobility.

 Experimentation with dynamic re-routing of UxVs:

o Experimenters need to monitor the camera or sensor feedback of UxVs in

space and re-locate them dynamically based on events (like fire detection) or

telemetry statistics.

Once experimenters have a clear picture on which category of experiments they want to run,

they should get in contact with the RAWFIE federation to be assisted for the preparation of

the experiment.

New experimenters shall clarify the experiments or the problem they would like to solve to

the responsible contact point. Then together they would define

 In which Testbed they would like to run the experiments

 With what type of devices

 What will be the hardware mounted (if it is needed)

Afterwards, an account is created in order to access web portal and administration tools:

like Redmine, Gitlab and Owncloud. Inside Owncloud, experimenters will find a folder

which contains a tutorial about the use of the platform.

In case that experimenters need to consume or produce messages from/to the Message bus

(for instance if they integrate their own hardware to RAWFIE UxV’s), specific guidelines are

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

29

given together with two examples of adapters based on different technologies (Java, Python)

which are available in gitlab. For safety reason all the adapters that are developed by

experimenters are tested prior to a simulated testbed of UAVs or USVs.

For hardware integration such as extra sensors or communications means, specific

dimensions and operating guidelines shall be submitted to the RAWFIE platform manager

who will advise the best integration solution. For instance, the image below represents the

integration of a snapdragon computer on a RAWFIE UAV.

Experimenters can book their resources in the permitted timetable of RAWFIE booking

service and start write their experiments. Each experiment is documented in advance, and

experimental resources booked, through an on-line system and cannot be conducted until the

proposed experiment has been approved by the ‘Ethics Committee’. The launching day

experimenter can either launch manually the devices or schedule the launching time

beforehand. In case of UAVs, qualified pilots must be supplied by the testbed operators

and/or the University of Athens.

30

Figure 4: Flowchart of a new experiment

2.4 Integration environment

This section describes the environment used for the integration of the RAWFIE components

and sub-systems and the subsequent testing. A high level overview is depicted in Figure 5.

The integration environment includes the information, communication and computing

infrastructure (servers, networks, etc.), the configuration (component settings, credentials,

etc.) and data repositories, the testbeds used for testing and all other external services.

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

31

Figure 5: RAWFIE environment integration

2.4.1 Development Lifecycle of RAWFIE Tools and Services

A clone infrastructure of the production RAWFIE platform infrastructure described in D5.3,

was created for development, integration and testing purposes, therefore for facilitating

continuous integration and resolving of errors. This environment is illustrated in Figure

6Figure 6.

The messages from the online RAWFIE platform (production environment) are mirrored to

the development environment in order to test all services with real data. The mirroring

procedure is also used in the opposite direction, for software code updates and for upgrading

services: when a service / software is stable enough it is moved to the online platform.

32

Figure 6: RAWFIE clones for the development infrastructure

According to the DoA, the first Milestone related to the development cycles was defined in

M18 on which the 1st release of the platform was released. In order to outline a structured

development process while maximizing the productivity and reducing possible bugs (that

could be exposed to the experimenters), the RAWFIE consortium agreed in the creation of

two identical environments: production and development. The production environment is the

online platform that external users and experimenters can reach the RAWFIE functionalities

via Internet. The development environment consists of servers and services used for updates

in coding and upgrading the services without affecting the rest of the infrastructure.

2.4.2 Data repositories

The data model defined in D4.7 can be broken down into four major components:

1. Persistent Storage of Message BUS / Measurements DB: this will be done by Kafka

Connect duplicating all messages on the BUS to HBASE (which is in turn backed by

Hadoop).

2. Analysis Results DB: this database will contain the results for the data analysis tasks

and is currently backed by a time series database called Whisper

3. Master Data DB: this will house traditional SQL type data and is implemented using

PostgreSQL.

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

33

4. Users & Rights Repository: uses a LDAP repository, as LDAP is a de facto standard

for user management. It stores all user related data (name, organisation, address,

password) and group memberships (roles based access control). The selected

implementation is OpenDJ

2.4.3 Tools & techniques for integration

RAWFIE uses a number of collaboration tools providing an integration friendly environment

for development and deployment, such as Git, Docker and Redmine (see Figure 7).

In addition, Hadoop and HIVE are used as the connectors between the messages and the data

storage of experimenters, which provides an efficient decoupling that is convenient for

integration. An automatic data chunking is implemented in an experiment-specific (or

experimenter-specific) directory on the HDFS storage. Such directory is created with the

initiation of an experiment.

Figure 7: Tools for integration

Several tools are being used in order to facilitate continuous reporting and the integration of

the software tools in a common environment. Redmine is used for issue-tracking tool. It

contains information related to the project work packages and the relevant actions. A Git

platform was installed with Gitlab environment for all partners to work concurrently by using

34

branching. All software is uploaded so that partners can create branches for their specific

development needs and features.

Another feature that is used for the integration is the creation of machine image boxes in

order to provide to testbed operators “black boxes” with the RAWFIE required services pre-

installed and pre-configured. RAWFIE components are installed in Vagrant image boxes,

which are used for quick deployment of the RAWFIE system by the developers and testers.

Docker is in use for the automation of installation for the simulators of USVs and UGVs.

2.4.4 Message Bus

The message bus is an essential integration tool. RAWFIE uses the Kafka message bus for

interconnecting the components, for data exchange, ordering and persistency, for reliability

and robustness.

The Kafka mirroring feature is used for creating the replica of an existing cluster, for

example, for the replication of an active data centre into a passive data centre. Kafka provides

a mirror maker tool for mirroring the source cluster into target cluster. This feature is used to

allow for the replication of an exploitation environment to a site dedicated to development,

test or maintenance.

The following diagram depicts the mirroring tool placement in architectural form:

Figure 8: Mirroring architecture6

In contrast of replication processes, mirroring provides duplication of data across the

testbeds. The advantages of mirroring are multiple like when a single connection is down, the

possibility of longer clients connection/session times (depending on the location of the

testbeds), and legislation (some data can be collected in a country while some other data

should not).

6

https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781782167938/4/ch04lvl1sec20/cl

uster-mirroring-in-kafka

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

35

2.4.5 Integration of new UxVs

WP4 deliverables provide technical guidelines for new UxVs integration in the platform. As

specified in D4.8, UxV providers need to implement an “UxV Node” software module. This

module is the software adaptor for RAWFIE, which will make the integrated UxV able to

send measurements data, and to receive information and commands in standard format,

mainly as JSON messages based on AVRO schemas. The RAWFIE “UxV Node” module

also implements Apache Kafka Publishers and Consumers software, for the communication

with other RAWFIE components.

2.4.6 Integration of new Testbeds

Besides providing the needed equipment for network connectivity, Testbeds owners need to

deploy on premises the following RAWFIE software components:

 At least two local Apache Kafka message bus servers, for redundancy and high

availability: these nodes realise the communication of the UxVs in the given

Testbed, with other RAWFIE components

 Testbed Manager: provides the software interface to store UxVs related

information to the Local DB, to the Master Data Repository through the Testbed

Directory Service and to the Triple Store DB through the SFA Aggregate Manager

(see D4.4, D4.5, D4.7, D4.8 for detailed information on the design and interactions

of these components)

 Triple Store DB and SFA Aggregate Manager: the SFA AM provides, through a

REST API, advertising functionalities based on semantic searches on the local

Triple Store. The same REST API is used for editing or adding new resources, to

store local resources (UxVs) information in the Triple Store DB

 Resource Controller (optional): provides resources controlling capabilities

according to custom algorithms developed within the RAWFIE project

 Monitoring Manager: provides Testbed side connection to the System Monitoring

services and the related Frontend tools.

These elements are distributed using Vagrant virtual machines. Several Vagrant7 virtual

machine image boxes provide testbed operators with an environment bundled with all the

RAWFIE components and the required software for these components to function properly.

These images include all the testbed services, such as the Testbed Manager, the Resource

Controller, the Message Bus broker, etc.

The distribution of these boxes to our testbed operators has two main benefits. First, we save

time from building from scratch every time the required software environment to perform

tests. Secondly, the distribution of ready-to-go images ensures that there will be no problems

to our testers, due to software incompatibilities. In addition, with every upcoming upgrade to

the RAWFIE components everything will continue to work properly.

7 https://www.vagrantup.com/

https://www.vagrantup.com/

36

The process to integrate devices and testbeds in RAWFIE platform is straightforward:

1. Testbeds provide information registered in RAWFIE database like location, name

of the testbed, polygon of area or indoor map (if the testbeds is indoor)

2. RAWFIE provides to testbed operator a VM for being installed in a local server

3. VPN certificates created for the testbed and VPN connection

4. Testbed operator registers via Testbed Manager the devices in the database

5. Trainings for the devices delivered in testbed

6. Testbed is up and running

Although the delivery of the devices to testbeds coming from 1st Open Call is ongoing, some

testbeds have started the integration process to the RAWFIE platform.

The first testbed ready for the integration was an indoor testbed providing experiments for

UGVs in several rooms. Starting from the kick off meeting in Athens for the Open Calls, 1

people from the University of Zaragoza provided an infrastructure for monitoring the possible

area of experiments. The Wi-Fi coverage was established and tested to all the areas. The next

thing was the installation of a local RAWFIE server. The credentials for the VPN network

was sent to the testbed and a Virtual image of machine embedding of the required

aforementioned services was sent to the testbed. The indoor maps were created by a lidar-

embedded sensor on the devices and sent for their integration to RAWFIE geoserver in order

to be used by the Experiment Authoring Tool and the Visualization tool (illustrated in Figure

9). The devices were made compatible with the Message bus by implementing a kafka

consumer and producer, available in the VPN network. The integration was completed with a

training session delivered by the manufacturer of the devices (UGVs) to the testbed owners.

 D6.5: RAWFIE Operational Platform Testing and Integration Report (c)

37

Figure 9: Experimental area of the University of Zaragoza displayed in the Experiment Authoring Tool
and the Visualization tool

2.5 Results of the Integration Test

This section provides an overview of the software interfaces between the various SW

modules developed within RAWFIE. It includes front-end components as well as modules

implemented at middle tier, testbed and UxV tiers. The table below provides additional

information about the type of interfaces that exist between each pairs of components. The

level of implementation/testing is depicted with appropriate colouring and represents the

situation at the end of the 3rd development iteration.

In Table 1 each cell represents an interface that was tested. This cell is used by the two

components at the cross lines: each client component, or caller of one or many services

interfaces, is represented in the rows, while the called component or service interface/s is

represented in the columns.

38

 Table 1: interface interaction matrix

Row =[accesses]=> Column W
eb

 P
o

rt
al

W
ik

i

R
es

o
u

rc
e

Ex
p

lo
re

r
To

o
l

B
o

o
ki

n
g

To
o

l

Ex
p

er
im

en
t

A
u

th
o

ri
n

g
To

o
l

Ex
p

er
im

en
t

M
o

n
it

o
ri

n
g

To
o

l

Sy
st

em
 M

o
n

it
o

ri
n

g
To

o
l

V
is

u
al

iz
at

io
n

 T
o

o
l

D
at

a
A

n
al

ys
is

 T
o

o
l

ED
L

C
o

m
p

ile
r

&
 V

al
id

at
o

r

Ex
p

er
im

en
t

V
al

id
at

io
n

 S
er

vi
ce

U
se

rs
 &

 R
ig

h
ts

 S
er

vi
ce

B
o

o
ki

n
g

Se
rv

ic
e

La
u

n
ch

in
g

Se
rv

ic
e

Ex
p

er
im

en
t

C
o

n
tr

o
lle

r

D
at

a
A

n
al

ys
is

 E
n

gi
n

e

Sy
st

em
 M

o
n

it
o

ri
n

g
Se

rv
ic

e

Te
st

b
ed

s
D

ir
ec

to
ry

 S
er

vi
ce

A
cc

o
u

n
ti

n
g

Se
rv

ic
e

V
is

u
al

iz
at

io
n

 E
n

gi
n

e

M
as

te
r

D
at

a
R

ep
o

si
to

ry

U
se

rs
 &

 R
ig

h
ts

 R
ep

o
si

to
ry

M
ea

su
re

m
en

ts
 R

ep
o

si
to

ry

R
es

u
lt

s
R

ep
o

si
to

ry

Te
st

b
ed

 M
an

ag
er

M
o

n
it

o
ri

n
g

M
an

ag
er

N
et

w
o

rk
 C

o
n

tr
o

lle
r

R
es

o
u

rc
e

C
o

n
tr

o
lle

r

A
gg

re
ga

te
 M

an
ag

er
 (

SF
A

)

U
xV

 n
o

d
e

U
xV

 P
ro

xi
m

it
y

U
xV

 -
 N

et
w

o
rk

 c
o

m
m

u
n

ic
at

io
n

U
xV

 –
 S

en
so

rs
 &

 L
o

ca
liz

at
io

n

U
xV

 –
 O

n
 b

o
ar

d
 s

to
ra

ge

U
xV

 –
 O

n
 b

o
ar

d
 p

ro
ce

ss
in

g

U
xV

 –
 D

ev
ic

e
m

an
ag

em
en

t

Sc
h

em
a

R
e

gi
st

ry

Web Portal R L

Wiki L

Resource Explorer Tool R R

Booking Tool R R O Type Description

Experiment Authoring Tool O O R J M-c Message bus consumer (receives messages from the message bus)

Experiment Monitoring Tool R R R R J M-p Message bus producer (sends messages to the message bus)

System Monitoring Tool R REST or R REST (via HTTP) web service

Visualization Tool O M M M M LDPA or L LDPA

Data Analysis Tool M,R R JDBC or J JDBC

EDL Compiler & Validator O J JPA Java Persistence API

Experiment Validation Service J I UxV internal: UxV OS dependent

Users & Rights Service J L

Booking Service R O R

Launching Service R M-p O M-p

Experiment Controller M-c M-p O M-p M-p

Data Analysis Engine R O R,O R

System Monitoring Service R M-c M-c

Testbeds Directory Service J

Accounting Service J

Visualization Engine M-c J M-c

Master Data Repository

Users & Rights Repository

Measurements Repository

Results Repository

Testbed Manager M-c M-p R M-c M-c R

Monitoring Manager M-p M-c

Network Controller M-p M M-c M

Resource Controller M-c M-p M M M M

Aggregate Manager (SFA)

UxV node M M-p M-p M I I I I I I M

UxV Proximity I

UxV - Network communication M M-p M I I

UxV – Sensors & Localization M M I

UxV – On board storage I

UxV – On board processing M I

UxV – Device management I

Schema Registry

 D6.5: RAWFIE Operational Platform Testing and Integration Report

39

Table 2: Interface types used in interface testing

Type Description

M-c Message bus consumer (receives messages from the message bus)

M-p Message bus producer (sends messages to the message bus)

REST or R REST (via HTTP) web service

SOAP or S SOAP web service

LDPA or L LDPA

JDBC or J JDBC

JPA Java Persistence API

I UxV internal: UxV OS dependent

Note: for interface of type M-p, a related component is not included (or only “Message Bus”

is mentioned). This is for example the case when the component acts as producer. The

rationale behind this is that the producer of an Avro message just sends to the Bus agnostic of

which will receive it. This message may be received by multiple consumers and this

interaction will be depicted in the interface table of each receiver component including

information for the exact producer. Therefore, there is no need to replicate this for the

producer by including several similar rows.

2.5.1 Front-end integration

In the front-end tier, the integration activities included:

 Integration of User and Rights Service with the Web Portal as the main authorization

mechanism for gaining access to the RAWFIE platform

 The following tools were integrated and became accessible via the web portal:

o Wiki Tool

o Resource Explorer Tool

o Booking Tool

o Experiment Authoring Tool

o Experiment Monitoring Tool

o System Monitor Tool

o Visualisation Tool

o Data Analysis Tool

Details on the interface testing activities performed for each front-end tool mentioned above

are provided in the tables that follow.

40

Table 3: Test of the Web portal interfaces

Component: Web Portal Conducted by:

Fraunhofer

Date: May 2018 Test Category: Interface

testing

Preconditions Users are entered in the User & Rights Repository

Wiki Tool has some help pages

Related Component Type8 Message or API Call Status Remarks/comments

1 User & Rights Repository LDAP Lookup Success Lookup user with the given password

from the login page worked

2 Wiki Tool Other HTTP open web page Success Open web page in the Wiki Tool

containing help for the current page.

Table 4: Test of the Wiki Tool interfaces

Component: Wiki Tool Conducted by: Fraunhofer Date: May 2018 Test Category: Interface

testing

Preconditions Users are entered in the User & Rights Repository

Related Component Type Message or API Call Status Remarks/comments

1 User & Rights Repository LDAP Lookup Success Lookup user with the given password

from the login page worked

8 Type refers to how the component interacts/interfaces with related component. For example if the component

produces a message intended to be received by the related component the type should be M-p (acts as producer)

while if it consumes a message type should be M-c.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

41

Table 5: Test of the Resource explorer interfaces

Component: Resource

Explorer

Conducted by: Fraunhofer Date: May 2018 Test Category: Interface

testing

Preconditions Resources are entered in the Master Data repository

Related Component Type Message or API Call Status Remarks/comments

1 Testbeds Directory

Service

REST searchResource Success Search resource by resource id

passig a JSON in input

2 getAllResources Success Got all resources/UxVs

3 searchTestbed Success Search testbed by testbed id passing

a JSON in input

4 getAllTestbeds Success Got all testbeds

5 getResources Success Got all resources/UxVs for a

specific testbed id passing a JSON

in input

6 testbed/identifier//{id} Success Testbed by testbed id

7 testbed/name/{name} Success Testbed by testbed name

8 testbeds?param1=value1

¶m2=value2¶m3=

value3

Success Testbeds by search parameters

9 resource/identifier/{id} Success Resource by resource id

10 resource/name/{name} Success Resource by resource name

11 resources?param1=value1

¶m2=value2¶m3=

value3¶m4=value4

Success Resources by search parameters

12 testbeds/uav Success Testbeds supporting UAV

13 testbeds/usv Success Testbeds supporting UGV

14 testbeds/ugv Success Testbeds supporting USV

15 Testbeds/auv Success Testbeds supporting AUV

5 Booking Tool HTTP Redirect to booking page of

testbed

Success Booking Tool opens the booking

page of the related testbed

42

Table 6: Test of the Booking Tool interfaces

Component: Booking Tool Conducted by: HAI Date: Feb 2018 Test Category: interface

testing

Preconditions User must be logged in

 UxV resources must be present in a testbed and advertised to the platform (browsable

by the resource explorer tool)

 Booking Service must be up and running

 User & Rights Service must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1

Booking Service

R addReservation Success

2 R editReservation Success

3 R deleteReservation Success

4 R getReservations Success

5 R getReservation Success

6
R checkForConflictingRese

rvations

Success

7 R approveBooking Success

8 R rejectBooking Success

9

User & Rights Service

R checkLogin Success Used to ensure that user of tool is

authorized

10
R checkTestbedRoles Success Used during approveBooking/

rejectBooking

11
Master Data

Repository

JPA/J

DBC

JPQL and/or JPA queries Success used to retrieve reservation & resource

information for display in calendar

view

Table 7: Test of the Experiment Authoring Tool interfaces

Component: Experiment

Authoring Tool

Conducted by: UoA Date: Feb 2017 Test Category: Interface

testing

Preconditions Users are entered in the RAWFIE Web Portal

Related Component Type Message or API Call Status Remarks/comments

1 Launching service REST manualStart Success Launching tool is correctly informed

about the ID of the experiment that will

be executed

2 REST schedule Success Schedule launch button correctly sends

the necessary info in the launching tool

3 EDL Compiler & Validator Other - Success The compiler & validator is correctly

adopted when needed

4 Experiment validation

service

Other HTTP requests Success Compilation and validation are

smoothly executed in the authoring tool

5 Master Data Repository JDBC JDBC-SQL Queries Success Data are correctly retrieved

 D6.5: RAWFIE Operational Platform Testing and Integration Report

43

Table 8: Test of the Experiment Monitoring Tool interfaces

Component: Experiment

Monitoring Tool

Conducted by: Fraunhofer Date: May 2018 Test Category: Interface

testing

Preconditions System Monitoring Service collected some data

Experiment Status is up-to-date in database

Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JDBC SQL – select experiments of

user

Success

2 JDBC SQL – select experiment

data and status

Success

3 JDBC SQL – select UxVs data of

experiment

Success

4 System Monitoring Service REST getComponentServiceHealth Success Health status shown

5 Launching Service REST cancel Success Status set to canceled

Table 9: Test of the System Monitoring Tool interfaces

Component: System

Monitoring Tool

Conducted by: Fraunhofer Date: May 2018 Test Category: Interface

testing

Preconditions System Monitoring Service collected some data

Related Component Type Message or API Call Status Remarks/comments

1 System Monitoring

Service

REST getComponentServiceHealths Success Got all health statuses

Table 10: Test of the Visualisation Tool interfaces

Component: Visualisation

Tool

Conducted by: Aberon Date: Feb 2017 Test Category: Interface

testing

Preconditions User must be logged in to the portal

 Related Component Type Message or API Call Status Remarks/comments

1 Visualisation Engine Web-

socket

startExperiment Success Connect to the visualisation engine and

retrieve all the information about an

experiment and get data for the

movement of the UxVs

2 stopExperiment Success Stop the visualisation of an experiment

3 getExperiments Success List all available experiment for the

user

4 getExperimentDetails Success Get the details for an experiment that

the user wants to visualise

44

Table 11: Test of the Data Analysis Tool interfaces

Component: Data Analysis

Tool

Conducted by: HESSO Date: Feb 2017 Test Category: Interface

testing

Preconditions User must be logged in

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and schema registry must be accessible

 Results database must be accessible

 Zeppelin & Spark must be operational

 Related Component Type Message or API Call Status Remarks/comments

1 Results Database REST render() Success Graphite is able to be queried via REST

and plots results

2 Data Analysis Engine

M-p buildJob() Success Send the Analytics jobs to the Data

Analysis Engine through the Kafka

message bus

3 REST Send the SPARK job

directly from the

Zeppelin UI

Success Message sent to Spark Directly via

REST interface. This is part of Zeppelin

by default and works already.

Table 12: Test of the Accounting Tool interfaces

Component: Resource

Explorer

Conducted by: Fraunhofer Date: May 2018 Test Category: Interface

testing

Preconditions User must be logged in with “billing manager” role

 Users with subscribtions, resource usages, invoices are already registered

Related Component Type Message or API Call Status Remarks/comments

1 Accounting Service REST getBalance(dn) Success Balance of user with the ID is

returned

2 getCurrentSubscriptionType(dn) Success Type ID of the subscription of the

user is returned

3 createAccount(account,

subscription)

Success User was created in the

accounting service after his first

billing action (book a resource)

4 getInvoices(dn) Success Returned all invoices of the given

user

5 getUsages(dn) Success Returned all usage data of the

given user

 setNextSubscriptionType(dn,

subscription)

Success Set the subscription of the given

user beginning with the next

billing period.

6 getNextSubscriptionType(dn) Success Returned of the next planned

subscription given user

7 getAccounts() Success Returned all accounts

2.5.1.1 Missing components

The UxV Navigation Tool was removed from the platform and thus not implemented. In its

place the Relocator was implemented coming from the need of dynamic navigation and not as

a remote-control-navigation system.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

45

2.5.2 Middle tier integration

In the middle-tier integration, activities included testing of interfaces of the following

services (with front-end tools, between them and through the message bus):

 EDL Compiler and Validator

 Experiment Validation Service

 User & Rights Service

 Booking Service

 Launching Service

 Experiment Controller

 Data Analysis Engine

 System Monitoring Service

 Testbed Directory Service

 Visualisation Engine

Details on the interface testing activities performed for each component mentioned above are

provided in the tables that follow.

Table 13: Test of the EDL Compiler and Validator interfaces

Component: EDL Compiler

and Validator

Conducted by: UoA Date: Feb 2017 Test Category: Interface

testing

Preconditions Users are entered in the RAWFIE Web Portal

Related Component Type Message or API Call Status Remarks/comments

1 Experiment validation

service

Other HTTP requests Success Experiments are smoothly validated

2 Master data Repository JDBC JDBC-SQL Queries Success The data are correctly retrieved

Table 14: Test of the Experiment Validation Service interfaces

Component: Experiment

Validation Service

Conducted by: UoA Date: Feb 2017 Test Category: interface

testing

Preconditions Users have entered into the RAWFIE portal.

 Related Component Type Message or API Call Status Remarks/comments

1 Master data Repository JDBC JDBC-SQL Queries Success Data are correctly retrieved

Table 15: Test of the User & Rights Service interfaces

Component: Users & Rights

Service

Conducted by: Fraunhofer Date: May 2018 Test Category: Interface

testing

Preconditions

Related Component Type Message or API Call Status Remarks/comments

1 User & Rights repository LDAP bind Success User credential validated

2 LDAP search Success Entries (users, groups etc.) listed

3 LDAP create Success Entries (users, groups etc.) added

4 LDAP modify Success Entries (users, groups etc.) edited

46

5 Master Data Repository JDBC SQL select testbed roles Success Read roles for testbeds

 JDBC SQL edit testbed roles Success Edit roles for testbeds

Table 16: Test of the Booking Service interfaces

Component: Booking Service Conducted by: HAI Date: February 2017 Test Category: interface

testing

Preconditions User must be logged in

 UxV resource info must be present in a Master Data Repository

 User & Rights Service must be up and running

 SFA Aggregate Manager must be deployed in a testbed and running

 Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JPA/

JDBC

Database call (insert) Success

2 JPA/

JDBC

Database call (update) Success

3 JPA/

JDBC

Database call (delete) Success

4 User & Rights Service R checkLogin Success Used to ensure that user of service is

authorized

5 Aggregate Manager9

(SFA)

R samant/allocate Success used to create a new reservation to the

SFA

6
R samant/delete Success used to delete a lease (reservation if for

some reason it fails in the RAWFIE

side

7

R admin/getInfo Success Used to retrieve information related to

all active leases (reservations) in SFA.

Needed for synchronization of

RAWFIE & SFA Triple Store

Databases

8
R Admin/change_state Success Used to change state of lease (required

during approve or reject booking

action)

9 Aggregate Manager used in RAWFIE is an adapted version of the SFA Aggregate Manager implemented in

the context of the SAMANT ROC1 subproject. The aggregate manager supports all SFA specific functionality

but provides for the additional reservation status that are needed to support RAWFIE 2-phase Booking process

 D6.5: RAWFIE Operational Platform Testing and Integration Report

47

Table 17: Test of the Launching service interfaces

Component: Launching

Service

Conducted by: HAI Date: Feb 2018 Test Category: interface

testing

Preconditions User must be logged in

 An experiment must be present for a user

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and configured with appropriate topics

(ExperimentLaunchRequest topic, ExperimentCancelRequest topic)

 Experiment Controller must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Experiment Controller M-p ExperimentLaunchReque

st

Success Message was sent successfully to

Message Bus and consumed by

Experiment Controller

2 Resource Controller M-p ExperimentCancelReque

st

Success Message was sent successfully to

Message Bus

3 Master Data Repository JPA/

JDBC

Database Interaction Success Connection to database succeeded

Retrieval/update/insert of information

succeeded

4 User & Rights Service R checkLogin Success Used to ensure that user of service is

authorized

Table 18: Test of the Experiment Controller interfaces

Component: Experiment

Controller

Conducted by: CERTH Date: Feb 2017 Test Category: interface

testing

Preconditions Message Bus must be up and configured with appropriate topics

 Connection to the RAWFIE database is required

 The related Resource Controller must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Launching Service M-c ExperimentLaunchReque

st

Success Message was successfully consumed by

Experiment Controller

3 Master Data Repository JDBC Database Interaction Success Retrieval of the experiment Script

succeeded

4 JDBC Database Interaction Success Retrieval of the resources partitions ids

succeeded

5 JDBC Database Interaction Success Retrieval of the testbed coordination

system succeeded

6 JDBC Database Interaction Success Insertion/Update inside

experimentlog/experiment_execution/
experiment tables succeeded

7 Resource Controller M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus and consumed by

Resource Controller

8 M-c ExperimentStatusMsg Success Message was consumed by Experiment

Controller

9 Testbed Manager M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus and consumed by Testbed

Manager

1

0

Visualization Engine M-p ExperimentStartRequest Success Message was sent successfully to

Message Bus and consumed by

Visualization Engine

48

Table 19: Test of the Data Analysis Engine interfaces

Component: Data Analysis

Engine

Conducted by: HESSO Date: Feb 2017 Test Category: Interface

testing

Preconditions User must be logged in

 Resources must be associated with a user

 Resources must be associated with an experiment

 Message Bus must be up and schema registry must be accessible

 Results database must be accessible.

 Spark must be operational

 Landoop Schema browser must be operational

 Related Component Type Message or API

Call

Status Remarks/comments

1 Schema Registry +

Schema Browser
REST /subjects Success Successfully iterate over all schemas via

the augmented Landoop schema browser.

Selection of features can also be done

here.

2 Data Analysis Tool REST /api/notebook Success Data Analysis tool utilizes Zeppelin

REST api to POST data

3 Results Database REST /

Sockets
graphite.send() Success A simple socket based connection from

Spark sends online results to the graphite

instance

4 Measurements Database M-c hbase.read() Not

Tested
Awaiting hadoop / hbase deployment

Table 20: Test of System Monitoring Service interfaces

Component: System

Monitoring Service

Conducted by:

Fraunhofer

Date: May 2018 Test Category: Interface

testing

Preconditions

Related Component Type Message or API Call Status Remarks/comments

1 Servers (Computer) O various Success Servers health status collected

2 Testbed Manager M-c TestbedHealthStatus Success Testbed send their health status to the

message bus

3 M-c UvVHealthStatus Success UxV health statuses send to the

message bus

 D6.5: RAWFIE Operational Platform Testing and Integration Report

49

Table 21: Test of the Testbed Directory Service interfaces

Component:

Testbed

Directory

Service

Conducted by: IES Date: Feb 2016, April

2017, June2018

Test Category: interface

testing

Preconditions Testbeds and Resources tables, as well as all related tables with linked information about testbeds and

resources, are present in the Master Data Repository (PostgreSQL DBMS)

Related

Component

Type Message or

API Call

Status Remarks/comments

1 Master Data

Repository

(PostgreSQL

database)

JPA - JDBC

Interaction

insertTestbed Success Operation performed by a RepositoryHandler class, to

support the createTestbed() REST API

2 updateTestbed Success Operation performed by a RepositoryHandler class, to

support the editTestbed() REST API

3 deleteTestbed Success Operation performed by a RepositoryHandler class, to

support the deleteTestbed() REST API

4 insertResource Success Operation performed by a RepositoryHandler class, to

support the createResource() REST API

5 updateResource Success Operation performed by a RepositoryHandler class, to

support the editResource() REST API

6 deleteResource Success Operation performed by a RepositoryHandler class, to

support the deleteResource() REST API

7 fetchTestbed Success Operation performed by a RepositoryQuery class, to

support the searchTestbed() REST API (get details

about a specific testbed)

8 fetchTestbeds Success Operation performed by a RepositoryQuery class, to

support the getTestbeds() REST API (get details

about the specified testbeds)

9 fetchResource Success Operation performed by a RepositoryQuery class, to

support the searchResource() REST API (get details

of a specific resource from a specific testbed)

10 fetchResourcesT

estbed
Success Operation performed by a RepositoryQuery class, to

support the getResources() REST API (to get details

of all resources from a specific testbed)

11 fetchResourcesA
vailable

Success Operation performed by a RepositoryQuery class, to

support the getAvailableResources() REST API (get

details of all resources which are AVAILABLE for

booking tests from a specific testbed)

12 fetchTestbedByI
d

Success Operation performed by a RepositoryQuery class, to

support the testbed search by id

13 fetchTestbedByN

ame
Success Operation performed by a RepositoryQuery class, to

support the testbed search by name

14 fetchTestbedsBy

UAV
Success Operation performed by a RepositoryQuery class, to

support the testbed search by UAV support

15 fetchTestbedsBy
UGV

Success Operation performed by a RepositoryQuery class, to

support the testbed search by UGV support

16 fetchTestbedsBy

USV
Success Operation performed by a RepositoryQuery class, to

support the testbed search by USV support

17 fetchTestbedsBy

AUV
Success Operation performed by a RepositoryQuery class, to

support the testbed search by AUV support

18 fetchTestbedsBy
Parameters

Success Operation performed by a RepositoryQuery class, to

support the testbeds search by a combination of search

criteria

19 fetchResourceBy
Id

Success Operation performed by a RepositoryQuery class, to

support the resource search by id

20 fetchResourceBy

Name
Success Operation performed by a RepositoryQuery class, to

support the resource search by name

21 fetchResourcesB

yParameters
Success Operation performed by a RepositoryQuery class, to

support the resources search by a combination of

search criteria

50

22 insertArea Success Operation performed by a RepositoryHandler class, to

support the createArea() REST API

23 updateArea Success Operation performed by a RepositoryHandler class, to

support the editArea() REST API

24 deleteArea Success Operation performed by a RepositoryHandler class, to

support the deleteArea() REST API

25 insertSensor Success Operation performed by a RepositoryHandler class, to

support the createSensor() REST API

26 updateSensor Success Operation performed by a RepositoryHandler class, to

support the editSensor() REST API

27 deleteSensor Success Operation performed by a RepositoryHandler class, to

support the deleteSensor() REST API

28 insertNetInterfac

e
Success Operation performed by a RepositoryHandler class, to

support the createNetInterface() REST API

29 updateNetInterfa
ce

Success Operation performed by a RepositoryHandler class, to

support the editNetInterface() REST API

30 deleteNetInterfac

e
Success Operation performed by a RepositoryHandler class, to

support the deleteNetInterface() REST API

31 associateResourc

eTestbed
Success Operation performed by a RepositoryHandler class, to

support the associateResourceTestbed() REST API

32 associateNetIfRe
source

Success Operation performed by a RepositoryHandler class, to

support the associateNetInterface() REST API

Table 22: Test of the Visualisation Engine interfaces

Component: Visualisation

Engine

Conducted by: Aberon Date: March 2017 Test Category: interface

testing

Preconditions User must be logged in to the portal

 Measurements and Results repository should be available

 Kafka should be available with the necessary topics

Related Component Type Message or API Call Status Remarks/comments

1 Master Data Repository JDBC GetExperimentDetails Success Get Experiment Status

2 Resource Controller M-c getGoTo Success Get the Goto Commands

3 Experiment Controller M-c ExperimentStartReque

st

Success Get the ExperimentStartRequest from

the Message bus

4 UxV Node M-c getUxVLocation Success Get the location of an UxV

5 M-c getUxVSensorData Success Get the sensor data from the UxVs. Not

all sensor data is implemented yet.

2.5.3 Testbed & UxV integration

At the testbed level integration, activities included testing of interfaces of the following

components (between them and through the message bus with UxVs or middle-tier

components):

 The Testbed Manager

 The Monitoring Manager

 The Resource Controller

 UxV node

 Network Controller

 Proximity Component

 SFA Aggregation Manager (passive component, not tested)

 D6.5: RAWFIE Operational Platform Testing and Integration Report

51

Details on the interface testing activities performed for each component mentioned above are

provided in the tables that follow.

Table 23: Test of the Tesbed Manager interfaces

Component: Testbed

Manager

Conducted by: HAI Date: May 2018 Test Category: interface

testing

Preconditions Confluent platform properly configured, up and running

 Related components must be up and running

Related Component Type Message or API Call Status Remarks/comments

1 System Monitoring

Service

M-p TestbedHealthStatus Success System Monitoring properly

consumes the message that describes

the current health of the machine

running the Testbed Manager

2 Resource Controller M-c ExperimentStatusMsg Success Testbed Manager properly consumes

the message that described the status

of an experiment from Resource

Controller

3 M-p ExperimentCancelRequest Succes

Testbed Manager properly cancels an

experiment in case of emergency

situations

4 Experiment Controller M-c ExperimentStartRequest Success Testbed Manager properly consumes

the message that describes the start

of an experiment from Experiment

Controller

5 Resource Controller M-c TestbedServicesHealthStatus Success Testbed Manager successfully

consumes and presents the messages

about the health status of Resource

Controller

6 Network Controller M-c TestbedServicesHealthStatus Success Testbed Manager successfully

consumes and presents the messages

about the health status of Network

Controller

7 Aggregate Manager –

SFA

R /admin/create Success New resources entered by Testbed

Manager are properly propagated in

SFA Triple Store database

8 Aggregate Manager –

SFA

R /admin/update Success Modifications in existing resources

from Testbed Manager are properly

propagated in SFA Triple Store

database

9 Aggregate Manager -

SFA

R /admin/delete Success Removal of existing resources from

Testbed Manager are properly

propagated in SFA Triple Store

database

52

Table 24: Test of the Monitoring Manager interfaces

Component: Monitoring

Manager

Conducted by: HAI Date: May 2018 Test Category: interface

testing

Preconditions Confluent platform properly configured, up and running

 Reliable Internet connection with UxVs

Related Component Type Message or API Call Status Remarks/comments

1 UxVNode M-c FuelUsage Success Real data from UxV devices

2 M-c CpuUsage Success Real data from UxV devices

3 M-c StorageUsage Success Real data from UxV devices

4 M-c Location Success Monitoring Manager successfully

receives Location messages from

UxV devices

5 M-c Attitude Success Monitoring Manager successfully

receives Attitude messages from UxV

devices

6 System Monitoring

Service

M-p UxVHealthStatus Success System Monitoring properly

consumes messages about current

UxV health status

 D6.5: RAWFIE Operational Platform Testing and Integration Report

53

Table 25: Test of the Resource Controller interfaces

Component: Resource

Controller

Conducted by: CERTH Date: Feb 2017 Test Category: interface

testing

Preconditions Confluent platform properly configured, up and running

 Experiment Controller must be up and running

 Related UxV Nodes must be up and running

Related Component Type Message or API Call Status Remarks/comments

1 UxV Node M-p WriteHealthStatus Not tested Send and receive real-time

information to resources

2 M-p WriteUxVCommands Success Send and receive real-time

information to resources

3 M-p WriteExperimentStatus Success Send real-time kafka messages

regarding the status of the

experiment

4 M-c ReadUxVStatus Success Resource Controller reads UAVs

statuses so as to successfully take-

off all the aerial vehicles before the

experiment initiation.

5 M-c Location Success Resource Controller is able to read

the actual position of the vehicles

6 Experiment Controller M-c ExperimentStartRequest Success Resource Controller successfully

receives and parses the experiment

to be executed

7 M-p ExperimentStatusMsg Success Message was sent successfully to

Message Bus

8 Launching Service M-c ExperimentCancelRequest Success Resource Controller successfully

receives and executes cancel

requests

9 Testbed Manager M-c ExperimentCancelRequest Success Resource Controller successfully

receives and executes cancel

requests

 M-p ExperimentStatusMsg Success Resource Controller successfully

publishes status messages

regarding any change in the

progress of the received

experiment

54

Table 26: Test of the UxV Node interfaces

Component:UxV Node Conducted by:

Robotnik, MST

Date: Feb 2017 Test Category: interface testing

Preconditions A server running the Confluent platform

 UxV manufacturer’s (e.g. Robotnik) specific preconditions:

 The necessary topics should be already registered

 A server running the Confluent platform should be available with the

necessary topics

 Input from the resource controller

 Reliable Internet connection

 Related Component Type Message or API Call Status Remarks/comments

1
Resource Controller M-c Goto Success GPS coordinates accuracy and threshold

for next waypoint needs to be configured

2

KeepStation Success Tested with success by MST; Ground

vehicles are accepting this command as

no waypoint commanded

3 Abort Success Tested with success

4

Location Success Without GPS specifying an origin of

coordinates is needed. For indoor

scenarios Cartesian coordinates are

given with standard goto message

5

Visualization Tool M-p Location message Success Visualization indoors is now using

specific images created with mapping

tools normally using 2D scans

6 Visualization Engine M-p Location message Success Get the location of an UxV

7
M-p SensorReadingScalar Success Get the sensor data from the UxVs. Not

all sensor data is implemented yet.

8 M-p UxVStatus Not tested

9

Data Analytics

M-p SensorReadingScalar Success Tested Salinity, Conductivity, and

SoundSpeed with water vehicles.

Temperature measurements from both

water and ground vehicles

10 Current Success Tested with success by MST

11 Voltage Success Tested with success by MST

12 StorageUsage Success Tested with success by MST

13 FuelUsage Success Tested with success by MST

14 CpuUsage Success Tested with success by MST

15 SensorInfo Success Tested with success by MST

16 Monitoring manager M-p FuelUsage Success Real data from the devices

17 CpuUsage Success Real data from the devices

18 StorageUsage Success Real data from the devices

19
Schema Registry M CachedSchemaRegistryClien

t

Success Get the schema registry

 D6.5: RAWFIE Operational Platform Testing and Integration Report

55

Table 27: Test of the Network Controller Interfaces

Component:

Monitoring Manager

Conducted by: CSEM Date: July 2018 Test Category: interface

testing

Preconditions Confluent platform properly configured, up and running

 Testbed components running

 Reliable Internet connection with UxVs

Related Component Type Message or API Call Status Remarks/comments

1 Network Controller M-c ExperimentStartRequest Success

2 M-c ExperimentStatusMsg Success

3 M-p GlobalNetwPerf Success

4 M-c Location Success

5 M-p NetwPerfUxV Success

6 M-c NetwReportingPeriod Success

7 M-p TestbedServicesHealthSta

tus

Success

Remark: command NetwSelectIf removed. Network interface selection is done either

internally within the UxVs or decided from the information available in GlobalNetwPerf

messages.

Table 28: Test of the Proximity Component interfaces

Component: Monitoring

Manager

Conducted by: MST Date: November 2017 Test Category: interface

testing

Preconditions Proximity component linked to a UxV serial port interface and powered on

 UxV connected to the testbed

Related Component Type Message or API Call Status Remarks/comments

1 Proximity Component M-c ProxyConnectData Success Message used for test purpose only

2 UART HCI interface Success UART/HCI interface between the

proximity component and the UxV

SFA aggregation manager (untested)

The SFA aggregation manager is a passive component that does not call any external module.

Rather, it is called via REST API by the Booking Service and/or the Testbed Manager.

Therefore, in what concerns interface testing the SFA aggregation manager is viewed as a

black box that is called by the 2 aforementioned RAWFIE components. Both of them already

provide information on the possible interactions in their interface test tables.

2.6 Verification scenarios results

2.6.1 Frontend Tier

The verification of the Front-end tier mainly consists testing the Web Portal GUI elements.

56

2.6.1.1 Web Portal

Table 29: Verification test of the Web Portal - Login/ Logout

Test ID: WP01 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Web Portal - Login/ Logout

Preconditions User entered in the User & Rights repository

Related Requirements PT-WEB-P-001, PT-WEB-P-002

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens RAWFIE any web page redirect to login page,

login form displayed

Success

2 user enters invalid credentials and submits

the form

error message

displayed

Success

3 user enters valid credentials and submits

the form

redirect to start page Success

4 user press the logout button redirect to login page,

login form displayed,

logout message

displayed

Success

Table 30: Verification test of the Web Portal – Language selection

Test ID: WP02 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Web Portal – Language selection

Preconditions Translation available

Related Requirements PT-WEB-P-001

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens RAWFIE any web page web page with

language selection

displayed,

Success

2 user changes the language web page displayed in

the selected language

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

57

Table 31: Verification test of the Web Portal – User management

Test ID: WP03 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Web Portal – User management

Preconditions Admin login available

 No pending registration request

Related Requirements PT-WEB-P-002

Tools Used Browser

Step Action Expected Result Status Remarks

1 Browser 1: login as administrator and open

user management page

management page

displayed

Success

2 Browser 1: Navigate to registration

requests page

No registration

request displayed

Success Registration request where

integrated into the user list

page. No separate page.

3 Browser 2: Open register form, fill in form

(login credentials, personal data, etc.) and

submit

Registration request

stored and

confirmation shown to

the user.

Success

4 Browser 2:Try to login with the submitted

login credentials

Login failed. Display

message that user is

looked

Success

5 Browser 1: Reload registration requests

page

The new registration

request is show

Success

6 Browser 1: Accept the new user The new user is now

unlooked

Success

7 Browser 2: Try to login with the submitted

login credentials

Login successful. Success

8 Browser 1: Navigate to the user list and

delete the new user

User deleted Success

9 Browser 2: Logout and try to login with the

submitted login credentials

Login failed. Show

invalid credentials

messages

Success

58

2.6.1.2 Wiki Tool

Table 32: Verification test of the Wiki Tool – Component Help

Test ID: WT01 Conducted by: Fraunhofer Date: May 2018 Test Category:

Verification Tests (front

end tier)

Hardware

Configuration

Software

Configuration

Test Name: Wiki Tool – Component help

Preconditions Help pages added to the Wiki

Related Requirements PT-WIK-001, PT-WIK-003

Tools Used Browser

Step Action Expected Result Status Remarks

1 Login to the Web Portal and open Resource

Explorer

Resource Explorer page displayed Success

2 Click on the Help icon Wiki Tool opened with the article about

Resource Explorer

Success

3 Change display language in the Wiki Wiki article displayed in another

language

Success

4 Repeat step 2 of other pages (like

Visualization Tool, Booking tool, etc.)

Wiki Tool opened with the article about

other tools

Success

Table 33: Verification test of the Wiki Tool – Editing

Test ID: WT02 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Wiki Tool – Editing

Preconditions User for Wiki management defined

Related Requirements PT-WIK-001, PT-WIK-002, PT-WIK-004

Tools Used Browser

Step Action Expected Result Status Remarks

1 Login to the Web Portal as normal

experimenter and open a page in the Wiki

Tool

Wiki page displayed Success

2 Try to edit the page Editing not possible

due to missing rights

Success

3 Login as administrator and assign the Wiki

manager right to the user

The user has now the

Wiki manager right

Success

4 Login as the first user and open a page in

the Wiki Tool

Wiki page displayed Success

5 Try to edit the page Editing allowed and

changes are saved

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

59

2.6.1.3 Resource Explorer Tool

Table 34: Verification test of the Browse testbeds and UxVs and start booking

Test ID: RET01 Conducted by: Fraunhofer Date: May

2018

Test Category:

Verification Tests (front

end tier)

Hardware Configuration

Software Configuration

Test Name: Browse testbeds and UxVs and start booking

Preconditions connection to the Testbeds Directory Service OK

 data about testbeds and UxVs available

Related Requirements PT-REE-T-001, PT-REE-T-003, PT-REE-T-004

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens Resource Explorer

Tool in the Web Portal

Resource Explorer Tool displays a view with

all available testbeds

Success

2 user set some filter parameters too

find a testbed fitting to its needs

Resource Explorer Tool displays only the

testbeds fitting to the filter

Success

3 user selects a testbed Resource Explorer Tool displays all testbed

details and a list of available UxVs

Success

4 user selects a UxV Resource Explorer Tool displays all UxVs

details

Success

5 user starts booking Booking Tool opened with the selected

resources

Success It was agreed to open

the testbed for

booking. Not the

UxV.

60

2.6.1.4 Booking Tool

Table 35: Verification test of the Booking Tool Calendar View and its display options

Test ID: BT01 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (web tier)

Hardware

Configuration

-

Software

Configuration

-

Test Name: Booking Tool Calendar View and display options

Preconditions connection to the Booking Service ok

 user has logged in the web portal

 reservations of different status exist in the Master DB

Related Requirements PT-BOO-T-001, PT-BOO-T-003, PT-BOO-T-006, PT-BOO-T-010

PT-BOO-T-015, PT-BOO-T-016, PT-BOO-S-008

Tools Used

Step Action Expected Result Status Remarks

1 Click of Bookings menu item Navigation to

Booking Tool

(Calendar View)

Success

 Calendar view

displays by

default the

present week

with all defined

bookings

Success

2 Switch Calendar display to display week, month, day interval via

the appropriate options

Calendar view

changes to

present the

selected interval

with all defined

bookings

Success

3 Navigate back and forth in time via the provided navigation

buttons (for every selection made in step 2)

Calendar view

changes to

previous or

future date time

intervals and

displays even

past reservations

Success

4 Verify by inspection of existing reservations that only

reservations of certain status are visible in the Calendar View

Reservation of

status

PENDING, OK

or REJECTED

should only be

displayed

Success

5 While in Calendar view, switch between different testbeds by

changing selection in the corresponding combo box

Reservations

only for the

selected testbeds

are available

Success new step

added in

D4.9

6 (Repeat action in step 5) While selecting

different testbeds

verify also that

the displayed

Calendar

timeslots adhere

to the testbed

Success new step

added in

D4.9

 D6.5: RAWFIE Operational Platform Testing and Integration Report

61

operational hours

as defined in the

Testbed DB table

7 Check filtering of calendar displayed events by

setting/modifying the filter textbox and clicking the apply button

Based on filter

options certain

booking events

may become

visible or

invisible

Success new step

added in

D4.9

62

Table 36: Verification test of the Booking Tool Calendar View Interactions

Test ID: BT02 Conducted by: HAI Date: June 2018 Test Category:

Verification Tests (web

tier)

Hardware

Configuration

-

Software

Configuration

-

Test Name: Booking Tool Calendar View Interactions

Preconditions connection to the Booking Service ok

 user has logged in the web portal

 reservations of different status exist in the Master DB

Related

Requirements

PT-BOO-T-001, PT-BOO-T-003, PT-BOO-T-005, PT-BOO-T-006,

PT-BOO-T-016, PT-BOO-S-002, PT-BOO-S-004

Tools Used

Step Action Expected Result Status Remarks

1 Click on an empty calendar timeslot

(result should depend on the relevance of the timeslot to the present

time)

If click occurs on a

past timeslot a popup

warning is displayed

Success

 If click occurs on a

future timeslot the

“Create Reservation”

window opens

Success

2 Click on an existing reservation

(result should depend on the relevance of the reservation to the

present time)

If click occurs on a

past reservation the

“Edit Reservation”

window opens but

no further actions are

offered to the user

Success

3 (see also test BT04) If click occurs on a

future reservation

the “Edit

Reservation”

window opens and

the user can perform

certain actions on the

reservation.

Displayed actions

depend on user role

and reservation

status

Success

4 verify the displayed color for each reservation (click existing

reservations)

Coloring of

reservation should

differ based on the

reservation status

(shown in the Edit

Reservation

window)

Success

5 Perform steps 1-3 after selecting different testbeds in the provided

drop down list

Verify that when a

testbed is selected in

the corresponding

Calendar view drop

down box then only

resources from this

Success new step

added in

D4.9

 D6.5: RAWFIE Operational Platform Testing and Integration Report

63

specific testbed are

displayed in all

popup windows

(Create/Edit/View

reservations)

7 verify the time options available during reservation edit/create The time steps for

begin and end time

should not fall

outside the testbed

defined operation

hours

Success new step

added in

D4.9

64

Table 37: Verification test of the Booking Tool Create Reservation

Test ID: BT03 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (web tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Tool Create Reservation

Preconditions connection to the Booking Service ok

 user has logged in the web portal

 user has clicked on an empty future timeslot

Related Requirements PT-BOO-T-001, PT-BOO-T-003, PT-BOO-T-004, PT-BOO-T-009

PT-BOO-T-010, PT-BOO-T-011, PT-BOO-T-017, PT-BOO-S-006

Tools Used

Step Action Expected Result Status Remarks

1 User edits the field of the “Create

Reservation” form so that no time

overlapping with other reservation exists

and presses the OK button (no conflicts

scenario)

Reservation is created

and displayed in the

Calendar View.

Reservation is put in

PENDING state

Success

2 User edits the field of the “Create

Reservation” form so that a time

overlapping with other reservation exists

and presses the OK button (possible

conflict scenario)

If no common resources

exist with the

overlapping reservation

then the new reservation

is created and displayed

in the Calendar View.

Reservation is put in

PENDING state

Success

 If common resources

exist with the

overlapping reservation

then the new reservation

is not created and a

warning message is

displayed

Success Result may depend on status

of pre-existing reservation

 D6.5: RAWFIE Operational Platform Testing and Integration Report

65

Table 38: Verification test of the Booking Tool Edit Reservation Actions

Test ID: BT04 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (web tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Tool Edit Reservation Actions

Preconditions connection to the Booking Service ok

 user has logged in the web portal

 user has clicked on an existing future reservation

Related Requirements PT-BOO-T-003, PT-BOO-T-005, PT-BOO-T-007, PT-BOO-T-008

PT-BOO-T-010, PT-BOO-T-011, PT-BOO-T-013, PT-BOO-T-014

PT-BOO-S-006, PT-NF-002

Tools Used

Step Action Expected Result Status Remarks

1 The actions available to the Edit

Reservation window depend on

the:

 status of reservation

 user

 role of the user

 status=PENDING

user= owner of reservation

role= EXPERIMENTER

Actions available:

OK, CANCEL DELETE

Success

 status=OK

user= owner of reservation

role= EXPERIMENTER

Actions available:

OK, CANCEL DELETE

Success

 status=REJECTED

user= owner of reservation

role= EXPERIMENTER

Actions available:

OK, CANCEL DELETE

Success

 status=PENDING

user= owner of reservation

role= TESTBED_OP

Actions available:

OK, CANCEL, DELETE,

APPROVE, REJECT

Success

 status=PENDING

user= not owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, APPROVE, REJECT

Success

 status=OK

user= owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, DELETE, REJECT

Success

 status=OK

user= not owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, REJECT

Success

 status=REJECTED

user= owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, DELETE, APPROVE

Success

 status= REJECTED

user= not owner of reservation

role= TESTBED_OP

Actions available:

CANCEL, APPROVE

Success

 user= not owner of reservation No actions available Success

2 Owner of reservation performs

changes to the reservation and

presses OK button

If the changes do NOT introduce

conflicts in both timeslots and

selected resources then the

reservation is successfully updated

and the UI refreshed to display the

changes

Success

 If the changes do introduce Success

66

conflicts in both timeslots and

selected resources then a warning

message appears and no further

action is performed

3 Owner of reservation presses

DELETE button

If reservation does not refer to a

currently running experiment then

it is put in a CANCELLED state

and removed from the UI

Success

4 User with TESTBED_OP role

presses APPROVE button

If no resource conflicts with

already created reservation exists

then reservation status becomes

OK and color changes

appropriately in the Calendar view

Success

5 User with TESTBED_OP role

presses REJECT button

reservation status becomes

REJECTED and color changes

appropriately in the Calendar view

Success

Table 39: Verification test of the Booking Tool SFA integration

Test ID: BT05 Conducted by: HAI Date: July 2018 Test Category: Verification

Tests (web tier)

Hardware Configuration -

Software Configuration -

Test Name: Booking Tool SFA Integration

Preconditions connection to the Booking Service ok

 connection to the SFA Aggregate Manager ok

 user has logged in the web portal

 user has clicked on an empty future timeslot

Related Requirements TB-AGG-001, TB-AGG-002, TB-AGG-004, TB-AGG-005, PT-BOO-T-002

Tools Used

Step Action Expected Result Status Remarks

1 Replicate all steps defined in BT03

(creation of the reservation)

Verify by the SFA UI

(i.e. MySlice) that

there exists a

reservation for the

involved resources in

the Aggregate

Manager data store

Success

2 Replicate steps 3 & 4 of BT04 Verify the status of

reservation is also

updated in Aggregate

Manager

Success

3 Perform a reservation of resources from the

MySlice interface`

After refreshing the

calendar view, verify

that a reservation

exists for these

resources

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

67

2.6.1.5 Experiment Authoring Tool

Table 40: Verification test of the in-Textual Editor Experiments definition

Test ID: EAT01 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Define Experiments in the Textual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-006, PT-EXA-T-007, PT-EXA-T-008, PT-EXA-T-009, PT-

EXA-T-010, PT-EXA-T-011, PT-EXA-T-012, PT-EXA-T-013, PT-EXA-T-014,

PT-EXA-T-015, PT-EXA-T-016, PT-EXV-S-002

Tools Used RAWFIE Web Portal

 RAWFIE Textual Editor

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success The redirection was

smoothly concluded

2 Write an experiment Experiment is presented in

the editor

Success The experiment was

presented in the editor

3 Utilize code completion, content assist

and compilation

The editor responds with

specific drop down lists,

messages, etc.

Success All the functionalities were

smoothly concluded

4 Define erroneous commands in the

experiment workflow

The editor responds with

error messages and

indication for correcting the

error

Success All the erroneous commands

were correctly identified

5 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success The experiment is correctly

stored in the database

68

Table 41: Verification test of the Textual Editor Experiments Update

Test ID: EAT02 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Update Experiments in the Textual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-007, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-

EXA-T-011, PT-EXA-T-012, PT-EXA-T-013, PT-EXA-T-014, PT-EXA-T-015,

PT-EXA-T-016

Tools Used RAWFIE Web Portal

 RAWFIE Textual Editor

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success The redirection was

smoothly concluded

2 Open an already defined experiment Experiment is presented in

the editor

Success The experiment was

presented in the editor

3 Makes changes in the experiment

workflow

The experiment is updated Success All changes were depicted in

the editor

4 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success The experiment was

successfully stored in the

database

 D6.5: RAWFIE Operational Platform Testing and Integration Report

69

Table 42: Verification test of the in-Visual Editor Experiments Define

Test ID: EAT03 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Define Experiments in the Visual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-007, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-

EXA-T-011, PT-EXA-T-012, PT-EXA-T-013, PT-EXA-T-014, PT-EXA-T-015,

PT-EXA-T-016

Tools Used RAWFIE Web Portal

 RAWFIE Visual Editor

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor

interface

Success The editor was correctly

depicted in the portal

2 Access the available toolbar Specific windows are

presented

Success The user can have easy

access in the toolbar

3 Create an experiment by utilizing the

available tools

The experimenter can

define waypoints and

experiment

information by

clicking and designing

in the visual editor

Success The experiment was easily

defined by the user

4 Define erroneous commands The authoring tool

responds with error

messages and

indication for

correcting the error

Success Erroneous commands were

correctly identified in the

editors

5 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success The experiment was

correctly stored in the

database

70

Table 43: Verification test of the in-Visual Editor Experiments Update

Test ID: EAT04 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Update Experiments in the Visual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-007, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-

EXA-T-011, PT-EXA-T-012, PT-EXA-T-013, PT-EXA-T-014, PT-EXA-T-015,

PT-EXA-T-016

Tools Used RAWFIE Web Portal

 RAWFIE Visual Editor

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor

interface

Success The editor was correctly

depicted in the portal

2 Open an already defined experiment Experiment is

presented in the editor

Success The user can easily open an

already stored experiment

3 Makes changes in the experiment

workflow

The experiment is

updated

Success The user can easily make

changes in both editors

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success The experiment was

correctly stored

Table 44: Verification test of the Editor switching

Test ID: EAT05 Conducted by: UoA (test modified in

D4.9)

Date:

October

2017

Test Category: Verification Tests

(front end tier – middle tier)

Hardware

Configuration

 See section 2.4

Software Configuration See section 2.4

Test Name: Switch between the Editors

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-005, PT-EXA-T-

008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-EXA-T-012, PT-EXA-T-013, PT-

EXA-T-015, PT-EXA-T-017

Tools Used RAWFIE Web Portal

 RAWFIE Textual Editor

 RAWFIE Visual Editor

Step Action Expected Result Status Remarks

1 Access to the editors through the RAWFIE Web Portal Redirection to the

editor interface

Success The editors

were smoothly

opened

2 Create an experiment Experiment is

presented in the editor

interface

Success The user

created an

expriment in

the textual

 D6.5: RAWFIE Operational Platform Testing and Integration Report

71

editor and

synchronized

the editors

3 Switch to the alternative editor and make changes The experiment is

updated

Success Both editors

are always

showing the

same

experiment

definition at

any time – The

user can make

cases in both

editors - The

synchranization

was correct

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success The experiment

was correctly

stored in the

database

Table 45: Verification test of the experiment Launchings

Test ID: EAT06 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Launch experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual - Visual Editors

 RAWFIE Launching Tool

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editors interface

Success The authoring tool opens

smoothly

2 Select an experiment A drop down list of

the available

experiments is

appeared and the

experimenter has the

opportunity to select

one

Success The experiment can be

selected and opened

3 Start the experiment execution The launching service

is informed with the

experiment ID and the

execution starts

Success After clicking in the

appropriate button, the

required information was

transferred to the launching

service

72

Table 46: Verification test of the experiment Launchings

Test ID: EAT07 Conducted by: UoA

(new test in D4.9)

Date: October 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Launch (scheduled) experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual - Visual Editors

 RAWFIE Launching Tool

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editor interface

Success The authoring tool opens

smoothly

2 Select the scheduled launching tool A drop-down list of

the available

experiments is

appeared and the

experimenter has the

opportunity to select

one

Success The experiment can be

selected and opened

3 Define the experiment execution The launching service

is informed with the

experiment ID and the

execution is planned

Success After clicking in the

appropriate button, the

required information was

transferred to the launching

service (scheduled

launching)

 D6.5: RAWFIE Operational Platform Testing and Integration Report

73

2.6.1.6 Experiment Monitoring Tool

Table 47: Verification test of the Visualisation of experiment status

Test ID: EMT01 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Visualisation of experiment status

Preconditions connection to the Launching Service ok

 knowledge about the experiments state needed on user side (to check

results)

Related Requirements PT-EXM-T-001, PT-EXM-T-002

Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens Experiment

Monitoring Tool in the Web

Portal

Experiment Monitoring Tool

displays a view with all

experiments of the current user

(ordered by date descending). The

list also contains a sort summary of

the experiments state

Success

2 user selects a experiment Experiment Monitoring Tool

displays all experiment details

(date / timespan; related testbed;

list of used UxVs; execution state ;

link to the used EDL)

Success Additionally health status

and review status are shown

Table 48: Verification test of the canceling of experiments

Test ID: EMT02 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration -

Software Configuration -

Test Name: Cancel of experiment

Preconditions Experiments running

Related Requirements PT-EXM-T-003, PT-EXP-C-001, PT-LAU-S-010, PT-LAU-S-012, TB-MAN-

005

Tools Used

Step Action Expected Result Status Remarks

1 user opens Experiment

Monitoring Tool in the Web

Portal

Experiment Monitoring Tool

displays a view with all

experiments of the current user

Success

2 user selects an experiment Experiment Monitoring Tool

displays all experiment details and

the option to cancel it

Success

3 User clicks the cancel button Cancellation request is sent.

User is informed about the ongoing

cancellation

Success

4 User watches further the

experiment status

Experiment status is set to

“cancelled” when the cancellation

is complete

Success

74

2.6.1.7 System Monitoring Tool

Table 49: Verification test of the Visualisation of system and UxV health status

Test ID: SMT01 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration

Software Configuration

Test Name: Visualisation of system and UxV health status

Preconditions connection to the System Monitoring Service

 administrative knowledge about the system state needed on user side (to

check results)

Related Requirements PT-SYM-T-001, PT-SYM-T-002, PT-SYM-T-004, PT-SYM-T-005,

PT-SYM-S-007
Tools Used Browser

Step Action Expected Result Status Remarks

1 user opens System

Monitoring Tool in the Web

Portal

the System Monitoring Tool

displays a view with severity

indication and textual information of

middleware components, testbeds

components, UxVs components

Success

2 User sets some sorting

(name, server/testbed/UxV)

and filter options to see the

services he is interested in.

Monitoring Tool filters and sorts the

data accordingly

Success

3 User watches the web site

for a while

Displayed data is updated

automatically (e.g. last update time)

Success

4 User manually triggers a

change in a health status of a

component

Displayed health status of the

component should change

Success

Table 50: Verification test of the Filtering based on roles

Test ID: SMT02 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration

Software Configuration

Test Name: Filtering based on roles

Preconditions connection to the System Monitoring Service

 administrative knowledge about the system state needed on user side (to

check results)

Related Requirements PT-SYM-T-003

Tools Used Browser

Step Action Expected Result Status Remarks

1 User with admin rights logs in Logged in Success

2 User opens System Monitoring Tool

in the Web Portal

User sees all servers,

testbeds an UxVs

Success

2 User with experimenter rights logs in Logged in Success

3 User opens System Monitoring Tool

in the Web Portal

User sees only testbeds an

UxVs

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

75

Table 51: Verification test of the Administrative Monitoring View

Test ID: SMT03 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (front end tier)

Hardware Configuration

Software Configuration

Test Name: Administrative Monitoring View

Preconditions connection to the System Monitoring Service

 administrative knowledge about the system state needed on user side (to

check results)

Related Requirements PT-SYM-T-001, PT-SYM-T-004, PT-SYM-T-005, PT-SYM-T-006,

PT-SYM-S-007, PT-SYM-S-009
Tools Used Browser

 SSH client

Step Action Expected Result Status Remarks

1 user opens the Icinga Web

application

 Icinga Web shows the

dashboard with the status

information

Success

2 User watches the web site for a

while

Displayed data is updated

automatically (e.g. last

update time)

Success

3 User manually triggers a change in a

health status of a component

Displayed health status of

the component should

change

Success

4 User opens detail page of a service Details of the service are

shown

Success

5 User opens history page of a service History with health status

changes of the service are

shown

Success

(See also tests for System Monitoring Service)

76

2.6.1.8 Visualisation Tool

Table 52: Verification test of the User request handling

Test ID: VIS01 Conducted by: Aberon

(test modified in D4.9)
Date: June 2018 Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: User request handling
Preconditions ● Requires visualization tool to be functioning & accessible.

● Requires visualization engine to be functioning & accessible.

Related Requirements PT-VIS-E-001, PT-VIS-E-003, PT-VIS-E-005, PT-EXP-C-002, PT-EXP-C-

003, PT-EXP-C-004, PT-EXP-C-006, PT-EXP-C-007, PT-EXP-C-008, PT-

EXP-C-009, PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-003, PT-VIS-T-004,

PT-VIS-T-005, PT-VIS-T-006, PT-VIS-T-007

Tools Used ●

Step Action Expected Result Status Remarks
1 A first user starts one of the experiments from

the experiment list
The visualization tool

forwards it to the

visualization engine

Success

2 the visualisation engine starts the

visualisation of the first experiment and

forwards the data to the first user

The map is loaded and

the experiment is

visualized on the first

user’s screen

Success

3 A second user starts visualizing another

experiment from another computer

The visualization tool

forwards it to the

visualization engine

Success

4 the visualisation engine starts the

visualisation of the second experiment and

forwards the data to the second user

The map is loaded and

the experiment is

visualized on the

second user’s screen

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

77

Table 53: Verification test of the Geospatial data handling

Test ID: VIS02 Conducted by: Aberon

(test modified in D4.9)
Date: June 2018 Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Geospatial data handling
Preconditions ● Requires visualization tool to be functioning & accessible.

● Requires visualization engine to be functioning & accessible.

● Requires message bus to be functioning & accessible.

Related Requirements PT-VIS-E-001, PT-VIS-E-002, PT-VIS-E-003, PT-VIS-E-004, PT-EXP-C-

002, PT-EXP-C-003, PT-EXP-C-004, PT-EXP-C-006, PT-EXP-C-007, PT-

EXP-C-008, PT-EXP-C-009, PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-003,

PT-VIS-T-004, PT-VIS-T-005, PT-VIS-T-006, PT-VIS-T-007

Tools Used ●

Step Action Expected Result Status Remarks
1 User starts an already running experiment Request is forwarded to

the VE
Success

2 The VE sends the data for the experiment in

the correct format to the VT
VT presents the data for

the experiment in layers

to the user

Success

Table 54: Verification test of the Geospatial data modification

Test ID: VIS03 Conducted by: Aberon

(test modified in D4.9)
Date: June 2018 Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Geospatial data modification
Preconditions ● Requires visualization tool to be functioning & accessible.

● Requires visualization engine to be functioning & accessible.

● Requires message bus to be functioning & accessible.

Related Requirements PT-VIS-E-001, PT-VIS-E-003, PT-EXP-C-002, PT-EXP-C-003, PT-EXP-C-

004, PT-EXP-C-006, PT-EXP-C-007, PT-EXP-C-008, PT-EXP-C-009, PT-

VIS-T-001, PT-VIS-T-002, PT-VIS-T-003, PT-VIS-T-004, PT-VIS-T-005, PT-

VIS-T-006, PT-VIS-T-007

Tools Used ● Browser

Step Action Expected Result Status Remarks
1 User starts an already running experiment Data is visualized

properly to the user
Success

2 User turns off a layer with data VT hides the data from

this layer from the user
Success

3 User turns on a layer with data from the

experiment
VT requests this data

from the VE, receives it

and shows it to the user

in the proper layer

Success

78

Table 55: Verification test of the Experiment Controller communication

Test ID: VIS04 Conducted by: Aberon

(test modified in D4.9)
Date: June 2018 Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Experiment Controller communication
Preconditions ● Requires experiment controller to be functioning & accessible.

● Requires visualization engine to be functioning & accessible.

Related Requirements PT-VIS-E-001, PT-VIS-E-003, PT-EXP-C-002, PT-EXP-C-003, PT-EXP-C-

004, PT-EXP-C-006, PT-EXP-C-007, PT-EXP-C-008, PT-EXP-C-009, PT-

VIS-T-001, PT-VIS-T-002, PT-VIS-T-007

Tools Used

Step Action Expected Result Status Remarks
1 The user starts an experiment The message is

forwarded to the

visualisation engine

Success

2 Receive a message that the experiment has

started from the Experiment Controller

The visualization tool

starts the experiment

and loads the map

Success

3 Receive a message that the experiment has

stopped from the Experiment Controller

The VT stops the

experiment and the user

gets a notification about

that event

Success

Table 56: Verification test of the Visualization Tool Interaction

Test ID: VIS05 Conducted by: Aberon

(test modified in D4.9)
Date: June 2018 Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Visualization Tool Interaction
Preconditions ● Requires visualization tool to be functioning & accessible.

● Requires visualization engine to be functioning & accessible.

Related Requirements PT-VIS-E-001, PT-VIS-E-003, PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-003,

PT-VIS-T-004, PT-VIS-T-005, PT-VIS-T-006, PT-VIS-T-007

Tools Used ●

Step Action Expected Result Status Remarks
1 Enable different features of the visualization

tool (e.g. show/hide speed web widget)
The user sees the

updated plot (show

speed web widget)

Success

2 Disable a feature (e.g. speed web widget) The widget is removed

from the screen

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

79

Table 57: Verification test of the Indoor maps

Test ID: VIS06 Conducted by: Aberon

(test modified in D4.9)
Date: June 2018 Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Indoor maps interaction
Preconditions ● Requires visualization tool to be functioning & accessible.

● Requires visualization engine to be functioning & accessible.

● Requires Experiment controller to be functioning & accessible.

● Requires an indoor map to be loaded in the GeoServer

Related Requirements PT-VIS-E-001, PT-VIS-E-003, PT-VIS-T-001, PT-VIS-T-002, PT-VIS-T-003,

PT-VIS-T-004, PT-VIS-T-005, PT-VIS-T-006, PT-VIS-T-007, PT-VIS-T-008

Tools Used ●

Step Action Expected Result Status Remarks
1 Open the visualization tool, list all

experiments

All experiments owned

by the user are

displayed

Success

2 Start an experiment with indoor maps An experiment is

loaded, the indoor map

is loaded from the

GeoServer and is

shown on the screen

Success

3 A UxV moves The data from the VE is

received and plotted on

the screen

Success

80

2.6.1.9 Data Analysis Tool

Table 22: Verification test of starting a data analysis task on the DAE via the DAT

Test ID: DAT01 Conducted by: HES-SO Date: Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Start a data analysis task on the DAE via the DAT
Preconditions ● Requires the message bus to be functioning and accessible

● Requires the schema registry to be functioning and accessible

● Requires the Zeppelin notebook interface of the DAT to be functioning and

accessible

● Requires result repository to be functioning and accessible

Related Requirements PT-DAA-T-001, PT-DAA-T-003, PT-DAA-T-005, PT-DAA-T-006, PT-DAA-T-

007, PT-DAA-T-008

Tools Used ●

Step Action Expected Result Status Remarks
1 Authorized user logs into the web portal and

clicks on the schema registry tab of the Data

Analysis Tool GUI embedded into the web

portal

Login successful,

successfully reaches

the schema registry

GUI tab of the Data

Analysis Tool GUI

embedded into the web

portal

Success

2 User selects the topics and fields

corresponding to streaming data currently

present on the message bus to perform an

analysis task on, then clicks on the “create

Zeppelin notebook” button once the desired

elements have been selected.

A Zeppelin notebook

has been successfully

created, and is already

populated with the

topics and fields

selected by the user.

Success

3 User designs an analysis task in the

notebook relying on Spark and starts it

within the notebook.

The job has been

successfully started.

The process should be

visible through the

spark master UI of the

Data Analysis Tool.

Additionally, if the

streaming results are

published to the time

series database (result

repository), the results

should be visible on

the Grafana dashboard

(part the Data Analysis

Tool).

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

81

Table 22: Verification test of retrieving data from the message bus

Test ID: DAT02 Conducted by: HES-SO Date: Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Retrieve data from the message bus
Preconditions ● Requires the message bus to be functioning and accessible

● Requires the schema registry to be functioning and accessible

● Requires result repository to be functioning and accessible

Related Requirements PT-DAA-T-00, PT-DAA-T-006, PT-DAA-T-007, PT-DAA-T-008

Tools Used ●

Step Action Expected Result Status Remarks
1 Authorized user logs into the web portal and

clicks on the schema registry tab of the Data

Analysis Tool GUI embedded into the web

portal

Login successful,

successfully reaches

the schema registry

GUI tab of the Data

Analysis Tool GUI

embedded into the web

portal

Success

2 User selects the topics and fields

corresponding to streaming data currently

present on the message bus to perform an

analysis task on, then clicks on the “create

Zeppelin notebook” button once the desired

elements have been selected.

A Zeppelin notebook

has been successfully

created, and is already

populated with the

topics and fields

selected by the user.

Success

3 User designs a streaming analysis task in the

notebook to be performed on data from the

message bus and starts it within the

notebook.

The data is

successfully retrieved

and the analysis task

therefore can process it

and display the results

on the Grafana

dashboard.

Success

82

Table 22: Verification test of ending a running job

Test ID: DAT03 Conducted by: HES-SO Date: Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: End a running job
Preconditions ● Requires the message bus to be functioning and accessible

● Requires the schema registry to be functioning and accessible

● Requires the Zeppelin notebook interface of the DAT to be functioning and

accessible

● Requires result repository to be functioning and accessible

Related Requirements PT-DAA-T-004, PT-DAA-T-003, PT-DAA-T-005, PT-DAA-T-006, PT-DAA-T-

007
Tools Used ●

Step Action Expected Result Status Remarks
1 Authorized user logs into the web portal and

clicks on the schema registry tab of the Data

Analysis Tool GUI embedded into the web

portal

Login successful,

successfully reaches

the schema registry

GUI tab of the Data

Analysis Tool GUI

embedded into the web

portal

Success

2 User selects the topics and fields

corresponding to streaming data currently

present on the message bus to perform an

analysis task on, then clicks on the “create

Zeppelin notebook” button once the desired

elements have been selected.

A Zeppelin notebook

has been successfully

created, and is already

populated with the

topics and fields

selected by the user.

Success

3 User designs an streaming analysis task in

the notebook to be performed on data from

the message bus and starts it within the

notebook.

The data is

successfully retrieved

and the analysis task

therefore can process it

and display the results

on the Grafana

dashboard.

Success

4 User stops the running job within the

Zeppelin notebook

The job has been

successfully stopped

(results stopped being

sent to the dashboard)

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

83

Table 22: Verification test of accessing past results

Test ID: DAT04 Conducted by: HES-SO Date: Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Access past results
Preconditions ● Requires the message bus to be functioning and accessible

● Requires the schema registry to be functioning and accessible

● Requires the Zeppelin notebook interface of the DAT to be functioning and

accessible

● Requires result repository to be functioning and accessible

Related Requirements PT-DAA-T-002, PT-DAA-T-005, PT-DAA-T-007, PT-DAA-T-008

Tools Used ●

Step Action Expected Result Status Remarks
1 Authorized user logs into the web portal and

clicks on the results repository tab of the

Data Analysis Tool GUI embedded into the

web portal

Login successful,

successfully reaches

results repository GUI

(Grafana dashboard)

tab of the Data

Analysis Tool GUI

embedded into the web

portal

Success

2 User uses the Grafana dashboard interface to

display results of previous time steps.

The dashboard allows

such browsing and

displays the past results

of the associated

experiment (associated

to a metric) correctly

Success

3 User accesses the data persistently stored on

Grafana’s underlying time series database

vias CLI.

The data is correctly

accessed.

In progress The data storage is done via

HDFS, which can be accessed

through the DAT.

84

2.6.2 Middle Tier (Services and Communication components)

2.6.2.1 Testbed Directory Service

Table 58: Verification test of the resources information retrieval and resources search

Test ID: TD01 Conducted by: IES Date:

February

2017,

June 2018

Test Category: Verification Tests

(Middle Tier)

Hardware Configuration

Software Configuration

Test Name: Retrieve resources information and search for specific resources

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test, the test executor should know either the ID of the

resource he/she is looking for, or other parameters according to the criteria

he/she is using for selecting specific resources

Related Requirements PT-DIR-S-003, PT-DIR-S-004, PT-DIR-S-006

Tools Used

Step Action Expected Result Status Remarks

1.a The input request is prepared, specifying

in input the testbed identifier and the

resource status (for the

/request/getResourcesByStatus() REST

interface), nothing in case the

/request/getAllResources() REST

interface is used

No error occurred.

The Testbed Directory Service

gives back a JSON response

message, containing details

about all resources in a specific

status (e.g. Booked, Released,

Sleep_mode), or all resources in

case the getAllResources()

interface is used

Success Addition of the

getResourcesByStat

us method

according to the

last requirements

iteration and the

subsequent updated

component design

in the D4.9

2.a The /request/getAllResources() (without

parameters) or request/

getResourcesByStatus() REST interfaces

can be called from the SOAP UI Client

Tool.

1.b The /request/resource/identifier/{id}

REST interface is called (from the

browser or using a tool like SOAP UI),

specifying the id of a specific resource

No error occurred.

The Testbed Directory Service

gives back a JSON response

message, containing detailed

information about the resource

(or the list of resources)

matching the search criteria

Success

2.b The /request/resource/name/{name}

REST interface is called (from the

browser or using a tool like SOAP UI),

specifying the name of a specific

resource

3.b The

/request/resources?param1=value1&par

am2=value2¶m3=value3¶m4

=value4 REST interface is called (from

the browser or using a tool like SOAP

UI), with one or more query parameters

according to the selected search criteria,

that is, a combination of one or more of

the following 4 possible search

parameters:

 resource_status

 resource_status_message

 resource_type

 health

4.b The /request/resources/testbedid/{id}

REST interface is called (from the

browser or using a tool like SOAP UI),

specifying the id of the Testbed we

would like to get resources from

 D6.5: RAWFIE Operational Platform Testing and Integration Report

85

Table 59: Verification tests for adding, editing or removing a testbed facility

Test ID: TD02 Conducted by: IES Date: February

2017, June 2018

Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Add / Edit / Delete a testbed facility

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service

When preparing the test for the testbed registration case, the test executor should

know the information about the testbed to be inserted. In case of a testbed

deletion, the testbed id must be known in advance

Related Requirements PT-DIR-S-005

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON request is prepared, with

the information about the new testbed to be

added

No error occurred.

And the information

about the new testbed

is from now on

available in the

Master Data

Repository, as it can

be verified by using

the getAllTestbeds()

or other REST

interfaces for

Testbeds searches (see

TD04)

Success

2.a The /request/createTestbed() REST

interface is called from the SOAP UI

Client Tool, specifying the testbed

information in the input JSON request

1.b The input JSON request is prepared, with

the information about the testbed whose

information is to be updated

No error occurred.

And the updated

testbed information is

from now on available

in the Master Data

Repository, as it can

be verified by using

the getAllTestbeds()

or other REST

interfaces for

Testbeds searches (see

TD04)

Success Added in D6.5

2.b The /request/editTestbed() REST interface

is called from the SOAP UI Client Tool,

specifying the testbed information in the

input JSON request

1.c The input JSON message request is

prepared, with the unique id of the testbed

facility to be deleted

No error occurred.

And the information

about the deleted

testbed (and related

resources) is not

available anymore in

the Master Data

Repository, as it can

be verified by using

the getAllTestbeds()

or other REST

interfaces (see TD04

in the following)

Success

2.c The /request/deleteTestbed() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the testbed to be deleted in the

provided input JSON request

Success

86

Table 60: Verification test of the registration or removal of a new UxV node into a testbed facility

Test ID: TD03 Conducted by: IES Date: February

2017, June 2018

Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Register / Edit / Delete an UxV node into a testbed facility

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service.

When preparing the test, the test executor should know either the ID/name of the

resource and testbed he/she is looking for, or the list criteria for selecting

specific resources

Related Requirements PT-DIR-S-007

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON message request is

prepared, with all information about the

new resource to be added (and the unique

id of the testbed facility it belongs to)

No error occurred.

And the information

about the new

resource (UxV node)

is from now on

available in the

Master Data

Repository, as it can

be verified by using

the getAllResources()

or other REST API

for Resources

searches (see previous

tests TD01)

Success

2.a The /request/createResource() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the resource to be added in the

provided input JSON request

1.b The input JSON request is prepared, with

the information about the resource whose

information is to be updated (and the

unique id of the testbed facility it belongs

to)

No error occurred.

And the updated

resource information

(UxV node) is from

now on available in

the Master Data

Repository, as it can

be verified by using

the getAllResources()

or other REST API

for Resources

searches (see previous

tests TD01)

Success Added in D6.5

2.b The /request/editResource() REST

interface is called from the SOAP UI

Client Tool, specifying the resource

information in the input JSON request

1.c The input JSON message request is

prepared, with the unique id of the

resource to be deleted and of the testbed

facility it belongs to

No error occurred.

And the resource

(UxV node) is not

available anymore in

the Master Data

Repository, as it can

be verified by using

the getAllResources()

or other REST API

(see previous tests

TD01)

Success

2.c The /request/deleteResource() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the resource to be deleted in the

provided input JSON request

 D6.5: RAWFIE Operational Platform Testing and Integration Report

87

Table 61: Verification test of the testbeds information retrieval and testbeds search

Test ID: TD04 Conducted by: IES Date: April 2017,

June 2018

Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Retrieve testbed information and search for specific testbeds

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory Service

When preparing the test, the test executor should know the ID of the testbed he/she is

looking for, or it can just provide one or a set of search criteria

Related Requirements PT-DIR-S-001, PT-DIR-S-002, PT-DIR-S-006

Tools Used

Step Action Expected

Result

Status Remarks

1.a The /request/getAllTestbeds() REST interface is called from the SOAP

UI Client Tool, without any specific testbed information (null JSON

input request)

No error

occurred.

The Testbed

Directory

Service gives

back a JSON

response

message,

containing

details about

all registered

testbeds and

all resources

belonging to

each of them

Success

1.b The /request/testbed/identifier/{id} REST interface is called from the

Browser, specifying the id of a specific testbed

No error

occurred.

The Testbed

Directory

Service gives

back a JSON

response

message,

containing

details about

the available

testbeds

conforming to

the search

criteria

Success

2.b The /request/testbed/name/{name} REST interface is called, specifying

the name of a specific testbed

3.b The /request/testbeds?param1=value1¶m2=value2

REST interface is called, with one or more query parameters according

to the selected search criteria, that is, a combination of one or both the

following 2 search parameters:

 health

 testbedstatusmessage

Success

4.b The /request/testbed/uav REST interface is called, looking for all

testbeds supporting UAV resources

Success

5.b The /request/testbed/ugv REST interface is called, looking for all

testbeds supporting UGV resources

Success

6.b The /request/testbed/usv REST interface is called, looking for all

testbeds supporting USV resources

Success

88

7.b The /request/testbed/auv REST interface is called, looking for all

testbeds supporting AUV resources

Success

Test ID: TD05 Conducted by: IES Date: June 2018 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Register / Edit / Delete a Testbed Area

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service.

Related Requirements

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON message request is

prepared, with all information about the

new testbed area to be added (and the

unique id of the testbed facility it belongs

to)

No error occurred.

And the information

about the new Area is

from now on

available in the

Master Data

Repository

Success Added in D6.5

2.a The /request/createArea() REST interface

is called from the SOAP UI Client Tool,

specifying the information about the

testbed area to be added in the provided

input JSON request

1.b The input JSON request is prepared, with

the information about the testbed area

whose information is to be updated (and

the unique id of the testbed facility it

belongs to)

No error occurred.

And the updated

testbed area

information is from

now on available in

the Master Data

Repository

Success Added in D6.5

2.b The /request/editArea() REST interface is

called from the SOAP UI Client Tool,

specifying the testbed Area information in

the input JSON request

1.c The input JSON message request is

prepared, with the name of the resource to

be deleted and the id of the testbed facility

it belongs to

No error occurred.

And the testbed area

is not available

anymore in the

Master Data

Repository

Success

Added in D6.5

2.c The /request/deleteArea() REST interface

is called from the SOAP UI Client Tool,

specifying the information about the

testbed area to be deleted in the provided

input JSON request

 D6.5: RAWFIE Operational Platform Testing and Integration Report

89

Test ID: TD05 Conducted by: IES Date: June 2018 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Register / Edit / Delete a UxV Sensor

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service.

Related Requirements

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON message request is

prepared, with all information about the

new sensor to be added (and the unique id

of the resource it belongs to)

No error occurred.

And the information

about the new sensor

is from now on

available in the

Master Data

Repository

Success Added in D6.5

2.a The /request/createSensor() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the sensor to be added in the

provided input JSON request

1.b The input JSON request is prepared, with

the information about the sensor whose

information is to be updated (and the

unique id of the resource it belongs to)

No error occurred.

And the updated

sensor information is

from now on

available in the

Master Data

Repository

Success Added in D6.5

2.b The /request/editSensor() REST interface

is called from the SOAP UI Client Tool,

specifying the sensor information in the

input JSON request

1.c The input JSON message request is

prepared, with the name of the sensor to be

deleted and the id of the resource (UxV) it

belongs to

No error occurred.

And the sensor is not

available anymore in

the Master Data

Repository

Success Added in D6.5

2.c The /request/deleteResource() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the resource to be deleted in the

provided input JSON request

90

Test ID: TD06 Conducted by: IES Date: June 2018 Test Category: Verification

Tests (Middle Tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Register / Edit / Delete a Network Interface

Preconditions Access to the PostgreSQL server must be granted for the Testbed Directory

Service.

Related Requirements

Tools Used SOAP UI

Step Action Expected Result Status Remarks

1.a The input JSON message request is

prepared, with all information about the

new UxV network interface to be added

No error occurred.

And the information

about the new

network interface is

from now on

available in the

Master Data

Repository

Success Added in D6.5

2.a The /request/createNetInterface() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the resource to be added in the

provided input JSON request

1.b The input JSON request is prepared, with

the information about the net interface

whose information is to be updated

No error occurred.

And the updated net

interface information

is from now on

available in the

Master Data

Repository)

Success Added in D6.5

2.b The /request/editNetInterface() REST

interface is called from the SOAP UI

Client Tool, specifying the net interface

information in the input JSON request

1.c The input JSON message request is

prepared, with the unique id of the

network interface to be deleted

No error occurred.

And the net interface

is not available

anymore in the

Master Data

Repository

Success

Added in D6.5

2.c The /request/deleteNetInterface() REST

interface is called from the SOAP UI

Client Tool, specifying the information

about the net interface (id) to be deleted in

the provided input JSON request

 D6.5: RAWFIE Operational Platform Testing and Integration Report

91

2.6.2.2 EDL Compiler and Validator

Table 62: Verification test of the in-Textual Editor Experiments definition

Test ID: EAT01

Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Define Experiments in the Textual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual Editor

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success

2 Write an experiment Experiment is presented in

the editor

Success

3 Utilize code completion, content assist

and compilation

The editor responds with

specific drop down lists,

messages, etc.

Success

4 Define erroneous commands in the

experiment workflow

The editor responds with

error messages and

indication for correcting the

error

Success

5 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success The experiment was

correctly stored

92

Table 63: Verification test of the Textual Editor Experiments Update

Test ID: EAT02 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Update Experiments in the Textual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual Editor

Step Action Expected Result Status Remarks

1 Access to the Textual Editor through

the RAWFIE Web Portal

Redirection to the Textual

Editor interface

Success

2 Open an already defined experiment Experiment is presented in

the editor

Success

3 Makes changes in the experiment

workflow

The experiment is updated Success

4 Save the experiment The experiment is stored in

the database and specific

files are produced to be

adopted by the remaining

RAWFIE components

Success The experiment was

correctly stored

 D6.5: RAWFIE Operational Platform Testing and Integration Report

93

Table 64: Verification test of the in-Visual Editor Experiments Define

Test ID: EAT03 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Define Experiments in the Visual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Visual Editor

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor interface

Success

2 Access the available toolbar Specific windows are

presented

Success

3 Create an experiment by utilizing the

available tools

The experimenter can

define waypoints and

experiment

information by

clicking and designing

in the visual editor

Success

4 Define erroneous commands The authoring tool

responds with error

messages and

indication for

correcting the error

Success

5 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success

94

Table 65: Verification test of the in-Visual Editor Experiments Update

Test ID: EAT04 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Update Experiments in the Visual Editor

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Visual Editor

Step Action Expected Result Status Remarks

1 Access to the Visual Editor through the

RAWFIE Web Portal

Redirection to the

Visual Editor interface

Success

2 Open an already defined experiment Experiment is

presented in the editor

Success

3 Makes changes in the experiment

workflow

The experiment is

updated

Success

4 Save the experiment The experiment is

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Success The experiment was

correclty stored

Table 66: Verification test of the Editor switching

Test ID: EAT05 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Switch between the Editors

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual Editor

 RAWFIE Visual Editor

Step Action Expected Result Status Remarks

1 Access to the editors through the RAWFIE

Web Portal

Redirection to the

editor interface

Success

2 Create an experiment Experiment is

presented in the editor

interface

Success

3 Switch to the alternative editor and make

changes

The experiment is

updated

Success The synchronization is

performed automaticaly

while both editors are visible

in the portal

4 Save the experiment The experiment is Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

95

stored in the database

and specific files are

produced to be

adopted by the

remaining RAWFIE

components

Table 67: Verification test of the experiment Launchings

Test ID: EAT06 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Launch experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual - Visual Editors

 RAWFIE Launching Tool

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the

RAWFIE Web Portal

Redirection to the

editor interface

Success

2 Select an experiment A drop-down list of

the available

experiments is

appeared and the

experimenter has the

opportunity to select

one

Success

3 Start the experiment execution The launching service

is informed with the

experiment ID and the

execution starts

Success The launching service was

correctly informed with the

experiment information

Table 68: Verification test of the experiment Launchings

Test ID: EAT07 Conducted by: UoA Date: April 2017 Test Category: Verification

Tests (front end tier –

middle tier)

Hardware Configuration -

Software Configuration

Test Name: Launch (scheduled) experiments

Preconditions User entered in the RAWFIE Portal

Related Requirements PT-EXA-T-001, PT-EXA-T-002, PT-EXA-T-003, PT-EXA-T-004, PT-EXA-T-

005, PT-EXA-T-008, PT-EXA-T-009, PT-EXA-T-010, PT-EXA-T-011, PT-

EXA-T-012, PT-EXA-T-013, PT-EXA-T-015

Tools Used RAWFIE Web Portal

 RAWFIE Textual - Visual Editors

 RAWFIE Launching Tool

Step Action Expected Result Status Remarks

1 Access to the authoring tool through the Redirection to the Success

96

RAWFIE Web Portal editor interface

2 Select the scheduled launching tool A drop-down list of

the available

experiments is

appeared and the

experimenter has the

opportunity to select

one

Success

3 Define the experiment execution The launching service

is informed with the

experiment ID and the

execution is planned

Success The launching service was

correctly informed with the

experiment information

2.6.2.3 Users & Rights Service

Table 69: Verification test of the Users & Rights Service login checking

Test ID: URS01 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Login checking

Preconditions Valid user name and password known

Related Requirements PT-USR-S-001

Tools Used SOAPUI REST client

Step Action Expected Result Status Remarks

1 invalid user name and password sent to the

Users & Rights Service

Users & Rights

Service returns failure

Success

2 valid user name and password sent to the

Users & Rights Service

Users & Rights

Service returns OK

Success

Table 70: Verification test of the Users & Rights Service roles/rights checking

Test ID: URS02 Conducted by: Fraunhofer Date: May 2018 Test Category: Verification

Tests (middle tier)

Hardware

Configuration

Software

Configuration

Test Name: Roles/rights checking

Preconditions Valid user rights known

Related

Requirements

PT-USR-S-002

Tools Used SOAPUI REST client

Step Action Expected Result Status Remarks

1 user ID and available required rights sent to the Users

& Rights Service

Users & Rights

Service return true

Success

2 user ID and not available required rights sent to the

Users & Rights Service

Users & Rights

Service return false

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

97

Table 71: Verification test of the user rights checks

Test ID: URS03 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration

Software Configuration

Test Name: Adding and editing user data

Preconditions New user does not exist

Related Requirements PT-USR-S-002

Tools Used SOAPUI REST client

Step Action Expected Result Status Remarks

1 New user data (personal data and

roles) sent to the Users & Rights

Service

Users & Rights Service

creates the new user and

returns true

Success

2 Request user data of new user Users & Rights Service

return the data. It should be

equal to the data of step 1

Success

3 Edited user data (personal data and

roles) sent to the Users & Rights

Service

Users & Rights Service

saves the user data and

returns true

Success

4 Request user data of the user Users & Rights Service

return the data. It should be

equal to the data of step 3

Success

2.6.2.4 Booking Service

The Booking Service is tightly coupled with the Booking Tool component. Therefore, the

verification tests described for the Booking Tool should also be considered during Booking

Service functionality verification activities. Verification tests of the component focus around

testing and ensuring the correctness of each provided method.

All Test Procedures BS01, BS02, BS03, BS04, BS05, BS06, BS07, BS08 remain unchanged

compared to what was defined in the previous version of the deliverable (D6.3). However due

to regression testing, test procedures were rerun on June 2018.

98

Table 72: Verification test of Booking Service add reservation functionality

Test ID: BS01 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service add reservation functionality

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource Reservation)

 User initiating the call is a valid experimenter

Related Requirements PT-BOO-S-001 (user level booking), PT-BOO-S-002, PT-BOO-S-004

PT-BOO-S-005, PT-BOO-S-007, PT-BOO-S-012

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call addReservation() providing a

datetime interval that has passed

response should be

returned with a proper

failure message

Success

2 Call addReservation() providing a

datetime interval in the future

(NO conflict in requested resources

with existing reservation at the same

time)

Appropriate MasterDB

tables are updated (new

reservation in

status=PENDING)

Success

 If email sending is

enabled then email is

send to both the creator

and the testbed operator

of the reserved resources

Success

 The returned response

contains the newly

created reservationId and

the reservation status

Success

3 Call addReservation() providing a

datetime interval in the future

conflict in requested resources with

existing reservation at the same time)

response should be

returned with a proper

failure message

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

99

Table 73: Verification test of Booking Service edit reservation functionality

Test ID: BS02 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service edit reservation functionality

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

 User initiating the call is a valid experimenter

Related Requirements PT-BOO-S-002, PT-BOO-S-005, PT-BOO-S-007, PT-BOO-S-013

Tools Used Booking Tool UI

Step Action Expected Result Status Remarks

1 Call editReservation() providing

appropriate ReservationData which

should include the reservationId

(the call should include credentials

about the user initiating it)

If provided user

credentials do not match

with the ones of the

reservation owner then a

proper failure message is

returned

Success

 If existing reservation

status!= PENDING then

no update should be

possible and a proper

failure message is

returned

Success

 If time related changes

refer to an interval in the

past then a proper failure

message is returned

Success

 (If status= PENDING & user credential

match)

If overlaps with existing

reservation are introduced

and resources conflicts

are detected then a proper

failure message is

returned

Success

 (If status= PENDING & user credential

match)

If no resources conflicts

are detected the changes

are accepted and the

corresponding DB tables

updated

Success

2 Repeat step 1 with different kind of

changes related to timeslots and

resource selection

Ensure that expected

results are respected as

described in step 1

Success Success of reservation edit

depends on whether overlaps

introduce conflicts according

to the steps described in step

1

100

Table 74: Verification test of Booking Service approve reservation functionality

Test ID: BS03 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service approve reservation functionality

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002, PT-BOO-S-005, PT-BOO-S-007, PT-BOO-S-013, PT-NF-002

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call approveReservation()

(the call should include credentials

about the user initiating it)

If provided credentials do

not match with an

authorized platform user

then a proper failure

message is returned

Success

 If provided credentials do

not refer to an authorized

platform user with

role=TESTBED_OP then

a proper failure message

is returned

Success

 If reservationId refers to a

reservation with status

!=PENDING then a

proper failure message is

returned

Success

 If reservationId refers to a

past reservation then then

a proper failure message

is returned

Success

 If conflicts are detected

with any other

APPROVED reservation

then then a proper failure

message is returned

Success

2 (If status= PENDING &

caller=TESTBED_OP & no conflicts

detected

Status change is accepted

and corresponding DB

tables updated

Success

 An email is send to the

owner of the reservation

Success

 A ReservationStatusMsg

is send to Message bus

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

101

Table 75: Verification test of Booking Service reject reservation functionality

Test ID: BS04 Conducted by:

HAI

 Date: June 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service reject reservation functionality

Preconditions Master DB is prepopulated with reservations of different status and timeslots

(involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002, PT-BOO-S-005, PT-BOO-S-007, PT-BOO-S-013, PT-NF-002

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call approveReservation()

(the call should include

credentials about the user

initiating it)

 If provided credentials

do not match with an

authorized platform

user then a proper

failure message is

returned

Success

 If provided credentials

do not refer to an

authorized platform

user with

role=TESTBED_OP

then a proper failure

message is returned

Success

 If reservationId refers

to a reservation with

status !=PENDING or

APPROVED then a

proper failure message

is returned

Success

 If reservationId refers

to a past reservation

then then a proper

failure message is

returned

Success

2 (If status= PENDING &

caller=TESTBED_OP

 Status change is

accepted and

corresponding DB

tables updated

Success

 An email is send to the

owner of the

reservation

Success

 A

ReservationStatusMsg

is send to Message bus

Success

102

Table 76: Verification test of Booking Service delete reservation functionality

Test ID: BS05 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service delete reservation functionality

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002, PT-BOO-S-005, PT-BOO-S-007, PT-NF-002

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Booking Tool UI

Step Action Expected Result Status Remarks

1 Call deleteReservation()

(the call should include credentials

about the user initiating it)

If provided credentials do

not match with an

authorized platform user

then a proper failure

message is returned

Success

 If reservationId refers to a

past reservation then a

proper failure message is

returned

Success

 If reservationId refers to a

reservation with resources

involved in a currently

running experiment a

proper failure message is

returned

Success

 If none of the above then

status change to

CANCELLED

Success

Table 77: Verification test of Booking Service retrieve reservation(s) functionality

Test ID: BS06 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service retrieve reservation(s) functionality

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002, PT-BOO-S-008

Tools Used HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 Call getReservation() providing a

reservationId

Inspect response and

ensure data is inline with

the information stored in

the MasterDB

Success

2 Call getReservations() providing

appropriate search criteria (time, user

etc.)

Inspect response and

ensure data is in line with

the information stored in

the MasterDB

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

103

Table 78: Verification test of Booking Service check for conflicts functionality

Test ID: BS07 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service check for conflicts functionality

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002, PT-BOO-S-006, PT-BOO-S-012

Tools Used HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 Call

checkForConflictingReservations()

providing proper reservation data info

Returns true or false

depending on whether

resource conflicts are

detected for time

overlapping with pre-

existing in the MasterDB

reservations

Success

2 Call getReservations() providing

appropriate search criteria (time, user

etc.)

Inspect response and

ensure data is in line with

the information stored in

the MasterDB

Success

Table 79: Verification test of Booking Service simultaneous reservations support

Test ID: BS08 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Booking Service simultaneous reservations support

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-BOO-S-002, PT-BOO-S-010

Tools Used soapUI

Step Action Expected Result Status Remarks

1 Multiple calls of Booking Service

addReservation() method

(execute BS01 multiple times

simultaneously from different clients)

Ensure that all requests

are processed and

multiple reservations are

created in the MasterDB

Success

2.6.2.5 Launching Service

 All Test Procedures LS01, LS02, LS03, LS04 did not change since the previous version

of the deliverable (D6.3). However due to regression testing, test procedures were rerun

on June 2018.

104

Table 80: Verification test of the Launching Service manual start (short term launching)

Test ID: LS01 Conducted by: HAI Date: June 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Experiment short term launching

Preconditions Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user and for a

defined experiment (involved tables are Experiment Experiment_Execution.,

Reservation, Reservation_item)

Related Requirements PT-LAU-S-001, PT-LAU-S-003, PT-LAU-S-004, PT-LAU-S-005, PT-LAU-S-007

PT-LAU-S-008, PT-LAU-S-009 (by design), PT-LAU-S-012,

PT-LAU-S-013 (by design), PT-LAU-S-015

Tools Used Experiment Authoring Tool UI

Maven, Java test client, HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 User call manualStart() providing

an experiment Id

if experimentId is not present in

the MasterDB then a proper

failure message is returned

Success

 If supplied user credentials do

not match an authorized user

then a proper failure message is

returned

Success

 If supplied user credentials

match an authorized user but

refer to booked resources of

another user then a proper failure

message is returned

Success

2 (case experimentId exists) if an executionId already exists

and refers to a running

experiment (status=Ongoing)

then a proper failure message is

returned

Success

3 (case no executionId exists or

exists for an status!=Ongoing)

Launching service generates an

ExperimentStartRequest to the

Message Bus (targeting the

Experiment Controller).

Success

 Master DB tables are properly

updated (tables

Experiment_Execution,

Reservation_item)

Success

 LaunchingServiceActionResp

json message is returned

containing the generated

executionId and the status of the

experiment

Success

Table 81: Verification test of the Launching Service schedule (long term launching)

Test ID: LS02 Conducted by: HAI Date: June 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

 D6.5: RAWFIE Operational Platform Testing and Integration Report

105

Test Name: Experiment long term launching

Preconditions Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user and for a

defined experiment (involved tables are Experiment Experiment_Execution.,

Reservation, Reservation_item)

 The platform launching scheduler must be running

Related Requirements PT-LAU-S-002, PT-LAU-S-003, PT-LAU-S-004, PT-LAU-S-005, PT-LAU-S-007

PT-LAU-S-008, PT-LAU-S-009 (by design), PT-LAU-S-011, PT-LAU-S-012

PT-LAU-S-013 (by design), PT-LAU-S-014, PT-LAU-S-015

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 User call schedule() providing

experimentId, startDate,

endDate

if experimentId is not present in the

MasterDB then a proper failure message

is returned

Success

 If supplied user credentials do not

match an authorized user then a proper

failure message is returned

Success

 If supplied user credentials match an

authorized user but refer to booked

resources of another user then a proper

failure message is returned

Success

 If startDate or, endDate refer to past

time then a proper failure message is

returned

Success

 If startDate or endDate are not contained

within the timeslot defined for the

associated reservation then a proper

failure message is returned

Success

 if an executionId already exists and

refers to a running experiment

(status=Ongoing) then a proper failure

message is returned

Success

2 Scheduling part

(case all preconditions are met)

Launching Scheduler is called and a job

is added to be launched at the specified

startDate

Success

 The user (owner) of the experiment and

the testbed operator are informed by an

appropriate notification (email)

Success

 Master DB tables are properly updated

(tables Experiment_Execution,

Reservation_item). The status of the

experiment should be BOOKED

Success

 LaunchingServiceActionResp json

message is returned containing the

generated executionId and the status of

the experiment

Success

3 Execution part

(check Launching Service

activity when startDate arrives)

Master DB tables are properly updated

(tables Experiment_Execution,

Reservation_item)The status of the

experiment changes to ONGOING

Success

 Launching service generates an

ExperimentStartRequest to the Message

Bus (targeting the Experiment

Controller).

Success

 Scheduled job (for the executionId) is

removed from scheduler

Success

106

Table 82: Verification test of the Launching Service cancellation request

Test ID: LS03 Conducted by: HAI Date: June 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Experiment cancellation request

Preconditions Requires the Message Bus and the experiment controller to be accessible.

 The master data repository should contain reservations for the user and for a defined

experiment (involved tables are Experiment Experiment_Execution., Reservation,

Reservation_item)

 An experiment should be schedule for a future time

Related Requirements PT-LAU-S-009 (by design), PT-LAU-S-010, PT-LAU-S-012,

PT-LAU-S-013 (by design)

Tools Used Maven, Java test client, HttpRequestor Firefox plugin

Step Action Expected Result Status Remarks

1 User call cancellation()

providing an executionId

if executionId is not present in the

MasterDB then a proper failure message

is returned

Success

 If supplied user credentials do not

match an authorized user then a proper

failure message is returned

Success

 If supplied user credentials match an

authorized user but refer to an

experiment of another experimenter

then a proper failure message is

returned

(Exception to this rule if credentials

refer to a testbed operator or

administrator)

Success

2 (case executionId exists) If the experiment is already running

(status= ONGOING) then cancellation

is not possible and a proper failure

message is returned

Success

 If no schedule job is found in

Launching scheduler then a proper

failure message is returned

Success

3 (executionId exists and the

execution is still in the

scheduler)

Job is removed from the scheduler Success

 Master DB tables are properly updated

(tables Experiment_Execution,

Reservation_item). The status of the

experiment changes to CANCELLED

Success

 LaunchingServiceActionResp json

message is returned containing with the

executionId, status= CANCELLED and

empty message field

Success

 The user (owner) of the experiment and

the testbed operator are informed by an

appropriate notification (email)

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

107

Table 83: Verification test of Launching Service simultaneous launching capability

Test ID: LS04 Conducted by: HAI Date: June 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Launching Service simultaneous launching capability

Preconditions Master DB is prepopulated with reservations of different status and

timeslots (involved tables are: Reservation, Resource_Reservation)

Related Requirements PT-LAU-S-006, PT-LAU-S-011

Tools Used soapUI

Step Action Expected Result Status Remarks

1 Multiple calls of Launching Service

schedule() method

(execute LS01 multiple times

simultaneously from different clients)

Ensure that all requests

are processed multiple

experiments executions

exist in the Job Scheduler

Success

2.6.2.6 Visualisation Engine

Table 84: Visualisation engine user request handling

Test ID: VE01 Conducted by: Aberon Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: User request handling

Preconditions Requires visualization tool and visualization engine to function and be

accessible

Related Requirements VIS01, VIS02

Tools Used

Step Action Expected Result Status Remarks

1 Visualization engine receive through

websocket request from visualization

tool

The visualization engine

handles the request

Success

2 Visualization engine sends through

websocket the response

Visualization tool receives

response

Success

108

Table 85: Visualization engine geospatial data modification

Test ID: VE02 Conducted by: Aberon Date: April 2017 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: Geospatial data modification test

Preconditions Requires visualization tool and visualization engine to function and be

accessible

Related Requirements VIS01,VIS02

Tools Used

Step Action Expected Result Status Remarks

1 Visualization engine receive through

the message bus

The visualization engine

handles the request

Success

2 Visualization engine update data in

database

Data is properly stored in the

database for future retrieval

Success

Table 86: Visualization engine camera interaction

Test ID: VE03 Conducted by: Aberon Date: Test Category: Verification Tests

(middle tier)
Hardware

Configuration

Software

Configuration

Test Name: Geo Data Test
Preconditions ● Requires visualization tool and visualization engine to function and be accessible

Related

Requirements
VIS01,VIS02

Tools Used

Step Action Expected Result Status Remarks
1 visualisation engine receives through

the message bus data from the

visualisation tool

The visualization engine

handles the request

Success

2 Visualization engine updates data in

database

Data is properly stored in

the database for future

retrieval

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

109

Table 58: Visualization engine indoor map handling

Test ID: VE04 Conducted by: Aberon Date: Test Category: Verification

Tests (middle tier)
Hardware Configuration

Software Configuration

Test Name: Indoor map test
Preconditions ● Requires visualization tool and visualization engine to function and be accessible

and an indoor map to be loaded in the GeoServer and experiment using indoor

map

Related Requirements VIS01, VIS02

Tools Used

Step Action Expected Result Status Remarks
1 visualisation engine receives a request

from the visualisation tool to start an

experiment that needs indoor map

 the visualisation engine loads

needed data from the db

Success

2 Visualization engine receives data from

an UxV

Visualisation engine updates

this data and forwards it to the

VE

Success

110

2.6.2.7 Data Analysis Engine

Table 58: Verification test of accepting analysis tasks defined through the Data Analysis Tool

Test ID: DAE01 Conducted by: HESSO Date: Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Accept analysis tasks defined through the Data Analysis Tool
Preconditions ● Requires the Zeppelin notebook interface of the DAT to be functioning and

accessible

● Requires result repository to be functioning and accessible

Related Requirements PT-DAA-S-001, PT-DAA-S-002

Tools Used ●

Step Action Expected Result Status Remarks
1 Authorized user logs into the web portal and

clicks on the Zeppelin notebook GUI tab of

the Data Analysis Tool GUI embedded into

the web portal

Login successful,

successfully reaches

the Zeppelin notebook

GUI tab of the Data

Analysis Tool GUI

embedded into the web

portal

Success

2 User designs a spectrum of data analysis

tasks in the notebook relying on various

interpreters (e.g. Spark, Python, etc.). For a

given task, the user starts it in its respective

notebook. A tasks can be defined using

predefined built-in algorithms or via

procedures that the user would have

designed from scratch within the interface.

The task has been

successfully started

(statement for a given

task). The results

(again, for a given

task) are visible

through the Grafana

dashboard.

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

111

Table 58: Verification test of scales properly to the addition of workers

Test ID: DAE02 Conducted by: HESSO Date: Test Category: Verification

Tests (front end)
Hardware Configuration

Software Configuration

Test Name: Scales properly to the addition of workers
Preconditions ● Requires the Zeppelin notebook interface of the DAT to be functioning and

accessible

● Requires result repository to be functioning and accessible

Related Requirements PT-DAA-S-003, PT-DAA-S-004, PT-DAA-T-004

Tools Used ●

Step Action Expected Result Status Remarks
1 Administrator designs and starts an analysis

task via the Data Analysis Tool Zeppelin

notebook GUI (see DAE01) under a given

cluster configuration.

The task has been

successfully started,

results are visible on

the Grafana dashboard

(for streaming tasks).

Success

2 Administrator stops running task. The task has been

successfully stopped.

Success

3 Administrator increases the number of

workers in the Spark cluster and launches

the same task.

The task has been

successfully started,

results are visible on

the Grafana dashboard

(for streaming tasks).

The results are similar

to the results of the

previous task.

Success

112

2.6.2.8 System Monitoring Service

Table 87: Verification test of the System Monitoring

Test ID: SYMS01 Conducted by:

Fraunhofer

Date: May 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration See section 2.4

Software Configuration See section 2.4

Test Name: System Monitoring

Preconditions

Related Requirements PT-SYM-S-001, PT-SYM-S-002, PT-SYM-S-006

Tools Used Browser

Step Action Expected Result Status Remarks

1 Service polls the computes of the

middle tier for their status

Computes return their health

status to the service

Success

2 Service listen to status messages on the

message bus

Testbed component sent

automatically status

information on the message

bus. Messages received by

the service

Success

3 System Monitory Tool request status

information

Service collects the

information and returns it

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

113

Table 88: Verification test of the System Monitoring Problem Notifications

Test ID: SYMS02 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration

Software Configuration

Test Name: System Monitoring Problem Notifications

Preconditions Notification receivers are configured

o Administrators

o User register for notifications if certain components are down

 Status information is collected

 connection System Monitoring Service and Tool

 administrative knowledge about the system state needed on user side (to

check results)

 administrative access to a server to shutdown a server

Related Requirements PT-SYM-T-001, PT-SYM-S-002, PT-SYM-S-003, PT-SYM-S-004, PT-SYM-S-

008
Tools Used Email client

 Browser

 SSH client

Step Action Expected Result Status Remarks

1 User shuts down a server of RAWFIE Error notifications (e.g.

email) should be sent by

the System Monitoring

Service to the

administrators and other

registered users

Success

 user opens System Monitoring Tool in

the Web Portal

the System Monitoring

Tool request the data from

the Service and displays

the server in critical state

Success

 User restarts the server of RAWFIE A recovery notification

(e.g. email) should be sent

by the System Monitoring

Service to the

administrators

Success

 user opens System Monitoring Tool in

the Web Portal

the System Monitoring

Tool request the data from

the Service and displays

the server in OK state

Success

114

Table 89: Verification test of sending notification on planned downtime

Test ID: SYMS03 Conducted by:

Fraunhofer

Date: May 2018 Test Category: Verification

Tests (middle tier)

Hardware Configuration

Software Configuration

Test Name: Sending notification on planned downtime

Preconditions Notification receivers are configured

Related Requirements PT-SYM-S-005

Tools Used Browser

 Email client

Step Action Expected Result Status Remarks

1 User marks a service with downtime

start

A notification (e.g. email)

should be sent by the

System Monitoring

Service to the

administrators.

Success

1 User marks a service with downtime

end

A notification (e.g. email)

should be sent by the

System Monitoring

Service to the

administrators.

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

115

2.6.2.9 Accounting Service

Table 90: Verification test of the accounting data collection

Test ID: ACCS01 Conducted by: Fraunhofer Date: May 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration

Software Configuration

Test Name: Accounting data collection

Preconditions Accounting data is empty for the used user

 Experimenter 1 and experimenter 2 have different active cost models

Related Requirements PT-ACC-S-001, PT-ACC-S-002, PT-ACC-S-003, PT-ACC-S-004, PT-ACC-S-

005, PT-ACC-S-006

Tools Used Browser

Step Action Expected Result Status Remarks

1 Experiment of experimenter 1 is

completed. Notifications sent on the

message bus.

Accounting received the

event and computes the

charge for the experiments

based on the active cost

model of experimenter 1

Success Done via database triggers

and periodical database

checks, not via message

bus

2 Experiment of experimenter 2 is

completed. Notifications sent on the

message bus.

Accounting received the

event and computes the

charge for the experiments

based on the active cost

model of experimenter 2

(should be different to

experimenter 1)

Success Done via database triggers

and periodical database

checks, not via message

bus

3 Billing period ends Bill is created and sent to the

both experimenters

Success

Table 91: Verification test of the account charging

Test ID: ACCS02 Conducted by: Fraunhofer Date: May 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration

Software Configuration

Test Name: Account charging

Preconditions User has an external payment system account

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 User opens the user profile page in the

Web Portal and klicks on account

charging. .

Redirect to payment system

selection and the to the

external payment system

Not tested No payment system

connected. Account

charging can be done by a

user with billing manager

role manually via the Web

Portal (Accounting Tool)

2 User executes the payment Payment is added to the

account balance

Not tested

116

2.6.2.10 Experiment Controller

The Experiment Controller component requirement not addressed by the tests specified

below is

 PT-EXP-C-001 “Cancellation of running experiments should be possible”.

Justification:

The cancellation of an ongoing experiment is possible through direct communication between

Experiment Monitoring Tool (see 2.6.1.6 paragraph) and the Resource Controller.

Table 92 Verification test of experiment forwarding

Test ID: EC01 Conducted by: CERTH Date: September

2018

Test Category: Verification

Tests (middle tier)

Hardware Configuration -

Software Configuration -

Test Name: Forward experiment details to the corresponding testbed

Preconditions Requires the Message Bus to be accessible

 Requires the corresponding instance Resource Controller to be up and

running

 Requires the entries on the corresponding tables in the Master DB to be

appropriately filled in.

Related Requirements PT-EXP-C-002

Tools Used

Step Action Expected Result Status Remarks

1 Send an ExperimentLaunchRequest type

of message

Experiment Controller

properly consumes the

message.

Success

 Interaction with the

Master DB to retrieve all

the required information.

During this procedure,

the following fields are

properly retrieved:

 EDL script

 Vehicles

canonical

names

 Partitions IDs

of all the

involved

vehicles

 Coordinate

system

Success Direct access to Master

Data Repository

(PostgreSQL database) , not

via message bus

 An

ExperimentStartRequest

type of message is

dispatched to the Kafka

message bus.

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

117

Table 93 Verification test of handling status updates of a running experiment

Test ID: EC02 Conducted by: CERTH Date: September

2018

Test Category:

Verification Tests

(middle tier)

Hardware Configuration -

Software Configuration -

Test Name: Status updates of a running experiment

Preconditions Requires the Message Bus to be accessible

 Requires the corresponding instance Resource Controller to be up and running

 Requires the entries on the corresponding tables in the Master DB to be

appropriately filled in.

Related Requirements PT-EXP-C-006, PT-EXP-C-007, PT-EXP-C-008, PT-EXP-C-009

Tools Used

Step Action Expected Result Status Remarks

1 Send an ExperimentStatusMsgtype

type of message regarding a

running experiment

Experiment Controller properly

consumes the message and updates

the following tables inside Master

DB:

 experimentlog

 experiment_execution

 experiment

Success

118

Table 94 Verification test of supporting experiments execution in multiple testbeds

Test ID: EC03 Conducted by: CERTH Date: Test Category:

Verification Tests

(middle tier)

Hardware Configuration -

Software Configuration -

Test Name: Support execution of experiments in multiple testbeds – Parallel execution

Preconditions Requires the Message Bus to be accessible

 Requires the corresponding instance Resource Controller to be up and running

 Requires the entries on the corresponding tables in the Master DB to be

appropriately filled in.

 Requires that multiple testbeds are connected to the RAWFIE platform

1Related Requirements PT-EXP-C-003, PT-EXP-C-004

Tools Used

Step Action Expected Result Status Remarks

1 Send an ExperimentLaunchRequest

type of message for testbed A

Experiment Controller properly

consumes the message and dispatch

an ExperimentStartRequest type of

message.

Success

 An instance of the Resource

Controller, launched for testbed A,

successfully receives the requested

experiment.

Success

2 Send an ExperimentLaunchRequest

type of message for testbed B

While the first experiment is

executed, Experiment Controller

properly consumes the new message

and dispatch an

ExperimentStartRequest type of

message.

Success

 An instance of the Resource

Controller, launched for testbed B,

successfully receives the requested

experiment.

Success

3 Update Master DB with

information coming from both the

running experiments

During the execution of all the

experiments, Experiment Controller

receives distinct status messages of

each experiment and properly

updates the corresponding fields

inside the Master DB.

Success

2.6.3 Testbed Tier

This section presents the test of the Testbeds and Resources control components.

2.6.3.1 Monitoring Manager

Monitoring Manager is tightly coupled with Testbed Manager coexisting in the same

application running at testbed level enabling the user to have a close look at computing and

UxV resources utilization.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

119

The Monitoring Manager component requirement not addressed by the tests specified below

is

o TB-MOM-005: Testing of this requirement presumes that other services with

well-defined interfaces like Weather conditions service are available to make

verification procedures feasible.

Test procedure MM01 is an updated version of that defined in D6.3 with extra steps added.

Test procedure MM02 is almost identical to Test Manager’s procedure TM03 in D6.3 which

has been moved to Monitoring Manager section for better cohesion of monitoring activities.

 Table 95: Verification test of UxV health status

Test ID: MM01 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(middle tier)

Hardware Configuration

Software Configuration

Test Name: Check UxV health status

Preconditions Requires the Message Bus to be accessible

 Requires the network controller to be accessible.

 Requires the System Monitoring Service to be accessible

 Initial UxV status configuration:

o Fuel usage WARNING < 50%, CRITICAL < 15%

o CPU usage WARNING > 50%, CRITICAL > 85%

o Storage usage WARNING > 50%, CRITICAL > 85%

Related Requirements TB-MOM-001, TB-MOM-003, TB-MOM004, PT-SYM-S-002, UXV-NOD-001,
TB-UVG-001

Tools Used

Step Action Expected Result Status Remarks

1 Monitoring Manager receives

periodically messages from UxVs

related to resources utilization

(FuelUsage, CpuUsage, Storage Usage)

from the message bus.

Monitoring Manager

properly consumes the

messages and displays the

result in Monitoring

Manager’s User Interface

Success Network Controller is not

required

2 Monitoring Manager calculates an

overall UxV status upon predefined

criteria for the above received messages

UxV status is displayed in

Monitoring Manager’s User

Interface

Success

3 Monitoring Manager periodically

transmits a message describing the

UxV Status to the Message Bus

System Monitoring Service

receives and displays the

current status for each UxV

Success

120

Table 96: Verification test of testbed health status

Test ID: MM02 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Check Testbed health status

Preconditions Requires middle tier to be accessible (System Monitoring Service)

 Initial Testbed health status configuration:

o CPU usage WARNING > 50%, CRITICAL >85%

o Memory usage WARNING > 50%, CRITICAL >85%

o Disk usage WARNING > 50%, CRITICAL >85%

o Frequency of sending messages 30 sec

Related Requirements TB-MOM-002, TB-MOM-003, TB-MOM004, PT-SYM-S-002

Tools Used

Step Action Expected Result Status Remarks

1 Monitoring Manager started 1. Monitoring manager

successfully initialized

2. Monitoring Manager

checks periodically CPU

load, memory and disk

usage

Success

2 Monitoring manager processing

(status assessment)

3. A TestbedHealthStatus

message is created

containing an overall

assessment (OK,

WARNING,

CRITICAL) for the

usage metrics monitored

4. The message is sent to

the Message bus

Success

3 Check System Monitoring Service

UI display at Middle Tier

Display of Testbed health

status. Initial status OK

Success

4 Artificially increase CPU or

Memory usage

Status message sent to the

message bus

Success i.e. by opening or running

additional resource

intensive applications in

the machine where

Testbed Manager is

installed

5 Recheck System monitoring Service

UI display at Middle Tier

Display of Testbed health

status. Status changes to

WARNING or CRITICAL

Success

6 Decrease CPU or Memory usage

and recheck System monitoring

Service UI display at Middle Tier

Display of Testbed health

status. Status changes back to

OK

Success Close extra running

applications

 D6.5: RAWFIE Operational Platform Testing and Integration Report

121

2.6.3.2 Network Controller

Table 97: Verification test of network interface listing

Test ID: NC01 Conducted by: CSEM Date: Test Category:

Verification Tests

(middle tier)

Hardware Configuration

Software Configuration

Test Name: Communications interface listing and management

Preconditions Requires the Testbed Manager and data base to be active

Related Requirements TB-NEC-001, TB-NEC-002

Tools Used Message Bus and Network Controller (debug mode) logs.

Step Action Expected Result Status Remarks

1 The Network Controller ‘lists’ the

available communication interfaces (as

resources) through the RAWFIE

testbed database.

The Data base is accessible

and the network interface

information tables are filled.

Success

122

Table 98: Verification test of network interface management

Test ID: NC02 Conducted by: CSEM Date: Test Category:

Verification Tests

(middle tier)

Hardware Configuration

Software Configuration

Test Name: Management of the network interfaces

Preconditions Requires the Testbed to be operational (in particular: Message Bus, UxV)

 UxV availability

Related Requirements TB-NEC-002, TB-NEC-003, TB-NEC-004, TB-NEC-005, TB-NEC-006, UXV-

INT-013

Tools Used Message Bus and components logs

Step Action Expected Result Status Remarks

1 One UxV is activated but stays static.

The message bus is available, the

Network Controller is running. A

dummy experiment is started so that

there is traffic between the UxV and the

testbed.

 Success

2 The UxV sends regular Network

Interface performance messages to the

Message Bus on topic NetwPerfUxv

which contains reports on link quality,

latency, etc…

The Network Controller

reads the network interface

performance message,

records and analyses

network performance data.

Success Topic NetwPerfUxv

3 In parallel, the Network Controller

monitors the network performance from

the testbed infrastructure wherever

available.

The Network Controller uses

OS tools to assess link

quality, latency, etc…

Success Tested with latency

4 The Network Controller regularly

publishes a high-level network

performance indicator

For each link, a value

between 0 (no link) and 5

(excellent link) is given. In

addition some textual

information on the network

performance accompanies

the indicator

Success Topic GlobalNetwPerf

5 The performance of the primary

communication interface is artificially

reduced, for instance by shadowing.

The Network Controller

notices the performance

degradation and suggest a

network interface change on

topic NetwSelectIf.

Success Performance degradation

noticed and signalled.

6 The UxV switches to the secondary

communication interface.

There is no or minimal (<

10s) communication break

between the UxV and the

testbed.

Not tested No UxV with more than

one interface available at

testing time.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

123

2.6.3.3 Resource Controller

Table 99 Verification test of starting/cancelling an experiment

Test ID: RC01 Conducted by: CERTH Date: Test Category: Verification

Tests (testbed tier)

Hardware Configuration -

Software Configuration -

Test Name: Start/Cancel an experiment

Preconditions Requires the Message Bus to be accessible.

 Requires Experiment Controller to be up and running.

Related Requirements TB-REC-001, TB-REC-002, TB-REC-006, TB-REC-007

Tools Used

Step Action Expected Result Status Remarks

1 Send an ExperimentStartRequest type of

message

Resource Controller

properly consumes the

message (filtering out all

the messages that do not

belong to the specific

testbed) and initiates the

command and control

loop.

Success At this point, Resource

Controller assumes that the

devices are ready to operate

 An experiment status

update is dispatched.

Success A running instance of the

Experiment Controller is

needed in order to catch this

status update

2 Send an ExperimentCancelRequest type

of message

Resource Controller

properly consumes the

message (filtering out all

the messages that do not

belong to the specific

testbed) and dispatches

abort commands to all the

operational UxVs.

Success After the abort commands,

Resource Controller

dispatches RTL messages in

each one of the involved

devices.

 An experiment status

update is dispatched.

Success A running instance of the

Experiment Controller is

needed in order to catch this

status update

124

Table 100 Verification test of the command the control loop

Test ID: RC02 Conducted by: CERTH Date: Test Category: Verification

Tests (testbed tier)

Hardware Configuration -

Software Configuration -

Test Name: Check functionality of command and control loop.

Preconditions Requires the Message Bus to be accessible.

 Requires Experiment Controller to be up and running.

 Requires all the involving UxVs to be operational.

Related Requirements TB-REC-003, TB-REC-004,TB-REC-005, TB-REC-007, UXV-NOD-001, UXV-

SEN-004

Tools Used

Step Action Expected Result Status Remarks

1 Resource Controller sends a set of

waypoints to all the involved UxVs

Each one of the involved

UxV receives and

proceeds to the

commanded waypoint.

Success

2 UxV continuously sends actual location Resource Controller

receives actual position

and checks if the UxV

has reached the

previously transmitted

waypoint (within a pre-

specified radius of

tolerance).

Success

 Resource Controller

sends the new set of

waypoints, when all the

operational UxVs have

reached their current

waypoints.

Success If there is no other set of

waypoints the experiment is

considered COMPLETED

and an appropriate

ExperimentStatusMsg is

dispatched to the Kafka

message bus

 D6.5: RAWFIE Operational Platform Testing and Integration Report

125

2.6.3.4 UxV Proximity component

Table 101: Verification test of Proximity component Backup communication

Test ID: UxP01 Conducted by: CSEM Date: April 2017 Test Category: Verification

Tests (UxV tier)

Hardware Configuration UxV with Proximity component (CSEM WiseNode)

Software Configuration UxV Embedded OS + CSEM WiseNET

Test Name: Backup communication

Preconditions UxV are equipped with the Proximity component

Related Requirements PT-GEN-001, PT-P-001, PT-P-003, PT-A-001, PT-A-003, PT-A-004, PT-A-005,

PT-A-006, PT-A-007, ,PT-A-009, ,PT-A-014, PT-A-016, PT-B-001, PT-L-002,

PT-E-002, PT-E-003, TB-G-004, TB-G-006, TB-I-001, TB-G-013, TB-D-001,

UXV-PRX-001, UXV-PRX-002, UXV-PRX-004

Tools Used

Step Action Expected Result Status Remarks

1 The UxVs are booked, the experiment is

programmed and started.

 Success Tested in another context

2 The UxVs lose the connection with the

primary RAWFIE communication system

The Proximity

communication

system takes over

Success Tested during neighbor

discovery demonstration

3 The UxVs act autonomously, following the

loaded mission instructions, logging all

motion parameters, exchanging

information across the swarm

The UxV use the

Proximity

communication

system.

Success Tested during neighbor

discovery demonstration

4 The UxVs come back and the logged

information is analysed

The communication

statistics exhibits low

packet error rate and

low latency

Success Tested during neighbor

discovery demonstration

126

Table 102: Verification test of UxV retrieval using the communication system of the Proximity
component

Test ID: UxP02 Conducted by: CSEM Date: April 2017 Test Category: Verification

Tests (UxV tier)

Hardware Configuration UxV with Proximity component (CSEM WiseNode)

Software Configuration UxV Embedded OS + CSEM WiseNET

Test Name: UxV retrieval

Preconditions UxV are equipped with the Proximity component

Related Requirements PT-GEN-001, PT-P-001, PT-P-003, PT-A-001, PT-A-003, PT-A-004, PT-A-005,

PT-A-006, PT-A-007, ,PT-A-009, ,PT-A-014, PT-A-016, PT-B-001, PT-L-002,

PT-E-002, PT-E-003, TB-G-004, TB-G-006, TB-I-001, TB-G-013, TB-D-001,

UXV-PRX-001, UXV-PRX-003, UXV-PRX-006

Tools Used

Step Action Expected Result Status Remarks

1 The UxVs are booked, the experiment is

programmed and started.

 Success Tested in another context

2 The UxVs perform their mission and one

of them exhausts its main power source

 Success Tested during neighbor

discovery demonstration

3 The other UxVs uses the Proximity

component communication systems to

communicate and locate the stopped UxV

The connection is

established with the

stopped UxV and the

collected information

allows for locating it

Success Tested during neighbor

discovery demonstration

4 The other UxVs transmit the location and

status of the stopped UxV to the RAWFIE

resource manager

 Success Tested during neighbor

discovery demonstration

Table 103: Verification test of Swarm motion using the Proximity component

Test ID: UxP03 Conducted by: CSEM Date: April 2017 Test Category: Verification

Tests (UxV tier)

Hardware Configuration UxV with Proximity component (CSEM WiseNode)

Software Configuration UxV Embedded OS + CSEM WiseNET

Test Name: Swarm motion

Preconditions UxV are equipped with the Proximity component.

 Acceptable margin for the relative location of UxV is defined depending on

the type of UxV and the scenario dynamics.

Related Requirements PT-GEN-001, PT-P-001, PT-P-003, PT-A-001, PT-A-003, PT-A-004, PT-A-005,

PT-A-006, PT-A-007, ,PT-A-009, ,PT-A-014, PT-A-016, PT-B-001, PT-L-002,

PT-E-002, PT-E-003, TB-G-004, TB-G-006, TB-I-001, TB-G-013, TB-D-001

Tools Used

Step Action Expected Result Status Remarks

1 The UxVs are booked, the experiment is

programmed and started.

 Success Tested in another context

2 The UxVs perform their mission moving in

a coordinated fashion

 Not tested Not implemented

3 The UxVs log all position Not tested Not implemented

4 The UxVs come back and the logged

information is analysed

The UxV relative

locations were within

the acceptable margin

Not tested Not implemented

 D6.5: RAWFIE Operational Platform Testing and Integration Report

127

2.6.3.5 Testbed Manager

Test procedures related to verifying Testbed Manager correct behaviour and adherence to

requirements defined in D3.3 are provided in this section. Following the last test plan update

(D4.9), the following modifications have been brought to the tests:

Test procedures TM01 and TM04 have been updated with extra steps added.

TM03 of D6.3 has been moved to Monitoring Manager section as MM02. TM02 of D6.3 has

been eliminated based on the assumption that the actions specified in this test will be handled by

proper Message Bus configuration.

TM02, TM03 and TM05 presented here are new.

128

Table 104: Verification test of experiment handling from testbed manager

Test ID: TM01 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Testbed Manager Experiment Handling

Preconditions Requires middle tier to be accessible (Experiment Controller Service)

 Requires the resource controller to be accessible

 Requires local PostgreSQL Server accessible

Related Requirements TB-MAN-005, TB-MAN-004, TB-MAN-001, TB-MAN-007, TB-MAN-010

Tools Used

Step Action Expected Result Status Remarks

1 Start Testbed Manager Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 Testbed Manager receives an

ExperimentStartRequest message

from Message Bus

A new experiment is

registered in the local

database. Testbed Manager

rejects experiments not

intended for this testbed

Success

3 Testbed Manager receives

ExperimentStatusMsg messages

from Message Bus

ExperimentStatusMsg

messages are periodically

transmitted from Resource

Controller providing the

current status of the

experiment. Upon reception

of a final state message the

experiment is registered either

as completed, failed or

cancelled in the experiments

history log in the local

database

Success

4 Testbed Manager sends an

ExperimentCancelRequest message

to the Message Bus

Resource controller receives

the message and initiates all

necessary actions to safely

stop all UxV resources. The

experiment is registered as

cancelled in the experiments

history log in the local

database

Success

5 User selects to see the experiments

executed in the testbed

Information about the

experiments executed in the

testbed is retrieved from the

local database (experiments

log) and shown in the relevant

window

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

129

Table 105: Verification test for creating and updating a testbed in the master database

Test ID: TM02 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Register and update a testbed in master RAWFIE database

Preconditions Requires Testbed Directory Service

Related Requirements TB-MAN-001, TB-MAN-007, PT-GEN-R-004, PT-DIR-S-005, PT-REE-T-001,

PT-REE-T-002

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 Upon entering the application for

the first time the user doesn’t find

any valid testbed data. The user

creates a new testbed by editing the

appropriate user interface window

A new testbed is created in

the master database using the

REST call defined in Testbed

Directory Service’s API

(/request/createTestbed). The

new testbed is displayed in

Resource Explorer Tool

 Success

3 The user updates the testbed data by

editing the appropriate user interface

window

Testbed data are updated in

the master database using the

REST call defined in Testbed

Directory Service’s API

(/request/editTestbed). The

updated testbed is displayed

in Resource Explorer Tool

Success

130

Table 106: Verification test for creating, updating and deleting a testbed area in the master database

Test ID: TM03 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Register, update and delete a testbed area in master RAWFIE database

Preconditions Requires Testbed Directory Service

Related Requirements TB-MAN-001, TB-MAN-007, PT-GEN-R-004, PT-DIR-S-005, PT-REE-T-001,

PT-REE-T-002

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 The user creates a new testbed area

by editing the appropriate user

interface window

A new testbed area is created

in the master database using

the REST call defined in

Testbed Directory Service’s

API (/request/createArea).

The new testbed area is

displayed in Resource

Explorer Tool

 Success

3 The user updates an existing testbed

area by editing the appropriate user

interface window

The testbed area is updated in

the master database using the

REST call defined in Testbed

Directory Service’s API

(/request/editArea). The

updated testbed area is

displayed in Resource

Explorer Tool

Success

4 The user deletes an existing testbed

area

The testbed area is deleted

from the master database

using the REST call defined

in Testbed Directory

Service’s API

(/request/deleteArea). The

testbed area now is not

present in Resource Explorer

Tool

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

131

Table 107: Verification test of creating, updating and deleting a resource in the master database

Test ID: TM04 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Register, update and delete a resource in master RAWFIE database

Preconditions Requires Testbed Directory Service

Related Requirements TB-MAN-002, TB-MAN-006, TB-MAN-007, PT-GEN-R-004, PT-DIR-S-007,

PT-REE-T-002

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 The user creates a new UxV

resource by editing the appropriate

user interface window

A new resource is created in

the master database using the

REST call defined in Testbed

Directory Service’s API

(/request/createResource).

The new resource is displayed

in Resource Explorer Tool

 Success

3 The user updates an existing UxV

resource by editing the appropriate

user interface window

The resource is updated in the

master database using the

REST call defined in Testbed

Directory Service’s API

(/request/editResource). The

updated resource is displayed

in Resource Explorer Tool

Success

4 The user deletes an existing UxV

resource

The resource is deleted from

the master database using the

REST call defined in Testbed

Directory Service’s API

(/request/deleteResource).

The resource now is not

present in Resource Explorer

Tool

Success

132

Table 108: Verification test for creating, updating and deleting a sensor in the master database

Test ID: TM05 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Register, update and delete a sensor in master RAWFIE database

Preconditions Requires Testbed Directory Service

Related Requirements TB-MAN-002, TB-MAN-006, TB-MAN-007, PT-GEN-R-004, PT-DIR-S-007,

PT-REE-T-003

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 The user creates a new sensor by

editing the appropriate user interface

window

A new sensor is created in the

master database using the

REST call defined in Testbed

Directory Service’s API

(/request/createSensor). The

new sensor is displayed in

Resource Explorer Tool

 Success

3 The user updates an existing sensor

by editing the appropriate user

interface window

The sensor data are updated

in the master database using

the REST call defined in

Testbed Directory Service’s

API (/request/editSensor).

The updated sensor is

displayed in Resource

Explorer Tool

Success

4 The user deletes an existing sensor The sensor is deleted from the

master database using the

REST call defined in Testbed

Directory Service’s API

(/request/deleteSensor). The

sensor now is not present in

Resource Explorer Tool

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

133

Table 109: Verification test for creating, updating and deleting a network interface in the master
database

Test ID: TM06 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Register, update and delete a network interface in master RAWFIE database

Preconditions Requires Testbed Directory Service

Related Requirements TB-MAN-002, TB-MAN-006, TB-MAN-007, PT-GEN-R-004, PT-DIR-S-007,

PT-REE-T-003

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 The user creates a new network

interface by editing the appropriate

user interface window

A new network interface is

created in the master database

using the REST call defined

in Testbed Directory

Service’s API

(/request/createNetInterface).

The new network interface is

displayed in Resource

Explorer Tool

 Success

3 The user updates and existing new

network interface by editing the

appropriate user interface window

The network interface data

are updated in the master

database using the REST call

defined in Testbed Directory

Service’s API

(/request/editNetInterface).

The updated network

interface is displayed in

Resource Explorer Tool

Success

4 The user deletes an existing new

network interface

The network interface is

deleted from the master

database using the REST call

defined in Testbed Directory

Service’s API

(/request/deleteNetInterface).

The network interface now is

not present in Resource

Explorer Tool

Success

134

Table 110: Verification test for assigning a network interface to a resource in the master database

Test ID: TM07 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Associate a network interface with a resource in master RAWFIE database

Preconditions Requires Testbed Directory Service

Related Requirements TB-MAN-002, TB-MAN-006, TB-MAN-007, PT-GEN-R-004, PT-DIR-S-007,

PT-REE-T-003

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the local

(testbed site) database server

Success

2 The user assigns a network

interface to an existing resource by

editing the appropriate user

interface window

A new network interface/resource

association is created in the

master database using the REST

call defined in Testbed Directory

Service’s API

(/request/associateNetIfResource).

The new network interface for the

resource is displayed in Resource

Explorer Tool

 Success

3 The user deletes the network

interface assigned to a resource

The network interface/resource

association is deleted from the

master database using the REST

call defined in Testbed Directory

Service’s API

(/request/deleteNetIfResource).

The information about assigned

network interfaces to the resource

is updated in Resource Explorer

Tool

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

135

Table 111: Verification test of Aggregate Manager create, update and delete operations

Test ID: TM08 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Register, update and delete a resource in SFA Aggregate Manager triple store

database

Preconditions Requires Aggregate Manager REST API

Related Requirements TB-AGG-001, TB-AGG-002, TB-AGG-003, TB-AGG-004, TB-AGG-005, TB-

MAN-002, TB-MAN-007

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 The user creates a new UxV

resource by editing the appropriate

user interface window

A new resource is created in

the triple-store database using

a POST REST call defined in

Aggregate Manager’s API.

The new resource is

accessible from MySlice API

Success

3 The user updates and existing UxV

resource by editing the appropriate

user interface window

The resource is updated in the

triple store database using a

PUT REST call defined in

Aggregate Manager’s API.

The updated resource is

accessible from MySlice API

Success

4 The user deletes an existing UxV

resource

The resource is deleted from

triple-store database using a

DELETE REST call defined

in Aggregate Manager’s API.

The resource now is not

present in MySlice API

Success

136

Table 112: Verification test of services running at testbed

Test ID: TM09 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Check the status of all services running at testbed level

Preconditions Requires middle tier to be accessible (Experiment Controller Service)

 Requires the resource controller to be accessible

 Requires local PostgreSQL Server accessible

Related Requirements TB-MAN-009, TB-MAN-007

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 Testbed manager receives periodical

status messages from Resource

Controller and Network Manager in

the Message Bus

 Success

3 User is able to see the availability of

the components that run at testbed

level by selecting the appropriate

user interface window

Show current status of

components running at

testbed level

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

137

Table 113: Verification test of testbed statistics display

Test ID: TM10 Conducted by: HAI Date: May 2018 Test Category:

Verification Tests

(Testbed tier)

Hardware Configuration Details

Software Configuration Details

Test Name: Display testbed statistics

Preconditions Requires the Message Bus to be accessible

 Requires middle tier to be accessible (Experiment Controller Service)

 Requires local PostgreSQL Server accessible

Related Requirements TB-MAN-009, TB-MAN-007

Tools Used

Step Action Expected Result Status Remarks

1 User starts Testbed Manager

application in testbed site

Testbed manager successfully

initialized

Successful connection to the

local (testbed site) database

server

Success

2 The user selects to see statistical

information related to testbed usage

by selecting the appropriate user

interface window

Statistical information about

testbed alive time, number of

experiments

completed/failed/cancelled

and information about time

utilization and participation in

experiments per resource is

displayed

Success

3 A new experiment is executed in the

testbed

See TM01 above Success

4 The user selects to see statistical

information related to testbed usage

by selecting the appropriate user

interface window

Statistical information has

been updated

Success

2.6.3.6 UxV Node

All tests related to the establishment of a secure connection from the UxVs to the testbed and

Message Bus were removed due to an architectural change: RAWFIE security is

implemented by VPN, which makes the use of secure connections inside the VPN redundant.

138

Table 114: Verification test of UxV Return to base

Test ID: UxV01 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)
Test Name: Return to base
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource

controller reachable)

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-NAV-T-003, PT-VIS-T-

001, TB-REC-001, TB-REC-004, UXV-NET-009, UXV-SEN-003, UXV-SEN-

005, UXV-PRC-001, UXV-MGT-002 ,UXV-PRC-003,UXV-PRC-005, UXV-

MGT-006, UXV-NOD-001,UXV-SEN-004, TB-UVG-001

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established OK

3 Send the return to base command

Return to base command

received
OK It is treated as a

waypoint to the

origin

4 If the UxV is not autonomous, instruct it

with the necessary waypoint or guidance

information, possibly until the end of the

test

Further optional instructions

for returning home received,

Confirmation of the UxV at

home

OK Either with

provided waypoint

for path planning or

just one waypoint

 D6.5: RAWFIE Operational Platform Testing and Integration Report

139

Test ID: UxV01 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Return to base
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource controller

reachable)
- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-NAV-T-003, PT-VIS-T-

001, TB-REC-001, TB-REC-004, UXV-NET-009, UXV-SEN-003, UXV-SEN-

005, UXV-PRC-001, UXV-MGT-002 ,UXV-PRC-003,UXV-PRC-005, UXV-

MGT-006, UXV-NOD-001,UXV-SEN-004, TB-UVG-001
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Send the return to base command

Return to base command

received
Success

4 If the UxV is not autonomous, instruct it

with the necessary waypoint or guidance

information, possibly until the end of the

test

Further optional instructions

for returning home received,

Confirmation of the UxV at

home

Success

140

Table 115: Verification test of the ability of the UxV to follow a route

Test ID: UxV02 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category:

Verification Tests

(testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Follow a route
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource

controller reachable)

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-NAV-T-004, PT-VIS-

T-001, TB-REC-001, TB-REC-004, UXV-NET-009, UXV-SEN-003, UXV-

SEN-004, UXV-SEN-005, UXV-PRC-001, UXV-NOD-001, TB-UVG-001,

UXV-INT-007, UXV-INT-008, UXV-INT-009, UXV-INT-010, UXV-INT-011
Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Resource controller computes mission and

send waypoint

Robot proceeds to the

specified point,
Success Care to choose

reachable

waypoints

2 Robot continuously sends actual location RC receives position and check

if WP have been reached
Success

3 RC sends next point Robot receives and proceed to

next point
Success Reached target

location with

desired location

must be checked

carefully by RC

 D6.5: RAWFIE Operational Platform Testing and Integration Report

141

Test ID: UxV02 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)
Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Follow a route
Preconditions - Requires the RAWFIE system to be operational (e.g. Resource controller

reachable)
- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements PT-EXA-T-008, PT-NAV-T-001, PT-NAV-T-002, PT-NAV-T-004, PT-VIS-

T-001, TB-REC-001, TB-REC-004, UXV-NET-009, UXV-SEN-003, UXV-

SEN-004, UXV-SEN-005, UXV-PRC-001, UXV-NOD-001, TB-UVG-001,

UXV-INT-007, UXV-INT-008, UXV-INT-009, UXV-INT-010, UXV-INT-011
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Step
1 Resource controller computes mission and

send waypoint
Robot proceeds to the

specified point,
Success

2 Robot continuously sends actual location RC receives position and check

if WP have been reached
Success

3 RC sends next point Robot receives and proceed to

next point
Success

Table 116: Verification test of Acquire sensor samples

Test ID: UxV03 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Acquire sensor samples
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating (e.g. en route).

- Requires the UxV to be reachable by any communication mean.
Related Requirements PT-NF-001, UXV-SEN-004, UXV-SEN-005, UXV-STO-001, UXV-STO-002,

UXV-NET-006, PT-VIS-T-003, TB-MAN-004, UXV-STO-001, UXV-STO-

002, UXV-STO-003, UXV-STO-004, UXV-SEN-001, UXV-SEN-002, UXV-

SEN-003, UXV-SEN-005, UXV-MGT-001, UXV-NOD-001, UXV-MGT-006-

TB-UVG-001, UXV-INT-012

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

3 Send the acquisition commands Commands received and

executed
Success Set of commands

to be completed

4 Store sensor samples and, if possible,

transmit them via the data communication

system

Samples stored and, if possible,

transmitted
Success

142

Test ID: UxV03 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Acquire sensor samples
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements PT-NF-001, UXV-SEN-004, UXV-SEN-005, UXV-STO-001, UXV-STO-002,

UXV-NET-006, PT-VIS-T-003, TB-MAN-004, UXV-STO-001, UXV-STO-

002, UXV-STO-003, UXV-STO-004, UXV-SEN-001, UXV-SEN-002, UXV-

SEN-003, UXV-SEN-005, UXV-MGT-001, UXV-NOD-001, UXV-MGT-006-

TB-UVG-001, UXV-INT-012
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Send the acquisition commands Commands received and

executed
Success Output of sensors is

controlled via the

SensorPublishContr

ol message.
4 Store sensor samples and, if possible,

transmit them via the data

communication system

Samples stored and, if possible,

transmitted
Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

143

Table 117: Verification test of Fidelity to commands

Test ID: UxV04 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Fidelity to commands
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002, UXV-STO-003, UXV-STO-004,, TB-UVG-001, UXV-NOD-

001, UXV-PRC-003, UXV-PRC-005
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Send repeatedly pre-defined sets of

commands, covering the full range of

possible UxV actions,

Commands received and

executed
Success

4 Check the conformance of the

undertaken actions and corrections (if

necessary) to the commands,

Undertaken actions in

conformance to the commands
Success

5 Record all fine grained status of the UxV

over the duration of the test, to be able to

reconstruct the behavior of the UxV,

Status recorded Success

144

Table 118: Verification test of Continuous communication

Test ID: UxV05 Conducted by: Rob, UoA, Certh Date: 15/12/16 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Continuous communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.

- Requires the UxV to be ready to operating.

- Requires the UxV to be reachable by any communication mean.
Related Requirements UXV-NET-006, TB-MOM-003, UXV-STO-004, UXV-MGT-006, TB-UVG-001

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

2 Exchange a predefined set of commands

and data.
Commands and data correctly

exchanged
OK Location,

Attitude,

LaserScan tested

3 Close the communication session. Communication closed OK

 D6.5: RAWFIE Operational Platform Testing and Integration Report

145

Test ID: UxV05 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)
Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Continuous communication
Preconditions • Requires the RAWFIE system to be operational

• Requires the mission to be defined and running.
• Requires the UxV to be ready to operating.
• Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, TB-MOM-003, UXV-STO-004, UXV-MGT-006, TB-UVG-001
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Exchange a predefined set of commands

and data.
Commands and data correctly

exchanged
Success

3 Close the communication session. Communication closed Success

Table 119: Verification test of Continuous communication

Test ID: UxV06 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Continuous communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the UxV to be ready to operating.
- Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, UXV-STO-004,

UXV-MGT-006,TB-UVG-001
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Check communication parameters

Communication parameters

and status are correct and

matching

Success

4 Exchange a pre-defined set of

commands and data,
Commands and data correctly

exchanged
Success

5 Close the communication session. Communication closed Success

146

Table 120: Verification test of Secure communication

Test ID: UxV07 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Secure communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating (e.g. en route).
- Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, UXV-STO-004, TB-UVG-001,

UXV-NOD-001, UXV-PRC-003, UXV-PRC-005, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Send safe commands and measure the

temporal characteristics of the

communication (e.g. response time,

synchronization of reception across a

swarm of UxV (coordinated group of

UxV), etc.).

Real-time constraints

applicable to the exchanged

commands are met or

mismatches are detected

Success The time of flight of

messages is greater

when the producer

registers with the

message bus,

sometimes reaching

more than 10

seconds. This

latency is perfectly

tolerated by MST

vehicles

 D6.5: RAWFIE Operational Platform Testing and Integration Report

147

Table 121: Verification test of Real-time communication

Test ID: UxV08 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Real-time communication
Preconditions - Requires the RAWFIE system to be operational

- Requires the mission to be defined and running.
- Requires the UxV to be ready to operating.
- Requires the UxV to be reachable (at least sporadically) by any

communication mean.
Related Requirements UXV-NET-006, TB-MOM-003, TB-MAN-004, UXV-STO-001, UXV-STO-002,

UXV-STO-003, UXV-STO-004, TB-UVG-001, UXV-MGT-003, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

2 Start a transaction. Transaction started Success

3 Interrupt the communication at the low-

level (e.g. disconnect the antenna)
Communication is interrupted,

the transaction is not

complete.

Success

4 Re-establish the communication low

level means
The transaction resumes and

completes
Success

5 Close the communication session. Connection closed Success

148

Table 122: Verification test of UxV Device Management

Test ID: UxV09 Conducted by: Rob Date: 20/04/2017 Test Category: Verification

Tests (Testbed tier)

Hardware Configuration Summit XL

Software Configuration ROS Indigo, Ubuntu 14.04

Test Name: UxV Device Management

Preconditions Requires the RAWFIE system to be operational

 Requires the mission to be defined and running.

 Requires the UxV to be ready to operating (e.g. en route).

 Requires the UxV to be reachable by any communication mean.

Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001, UXV-

STO-002,UXV-STO-003, UXV-STO-004, UXV-MGT-006

Tools Used Secured Remote Desktop Application

Step Action Expected Result Status Remarks

1 Establish the communication with the

UxV

Communication established Success Internal tool for maintenance

2 Establish a secure control session (if

not done already)

Secured control session

established

Success

3 Send device management commands

Command received and

applied

- Full control of embedded robot

computer

4 Check and log the status of the

device

Device has responded to the

commands according to the

specification

Success

5 Close the secure control session. The UxV is home after a safe

return. Connection closed

Success

Test ID: UxV09 Conducted by: MST Date: Feb 2017 Test Category:

Verification

Tests (Testbed

tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: UxV Device Management
Preconditions Requires the RAWFIE system to be operational

 Requires the mission to be defined and running.

 Requires the UxV to be ready to operating (e.g. en route).

 Requires the UxV to be reachable by any communication mean.
Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002,UXV-STO-003, UXV-STO-004, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

3 Send device management commands

Command received and

applied
Success

4 Check and log the status of the device Device has responded to the

commands according to the

specification

Success

 D6.5: RAWFIE Operational Platform Testing and Integration Report

149

Table 123: Verification test of the UxV connection

Test ID: UxV10 Conducted by: Rob, UoA,

Certh

Date: 27/2/2017 Test Category:

Verification Tests

(testbed tier)

Hardware Configuration Summit XL

Software Configuration Ros Indigo, Ubuntu 14.04

Test Name: UxV Connection Test

Preconditions UxV-Node launched, Message bus working

Related Requirement UXV-NET-006, TB-MOM-003, UXV-STO-004

Tools Used Robot, Porto MST Facilities Network, PC

Step Action Expected Result Status Remarks

1 Kafka Subscriber is called from another machine Topic is shown with UxV

information being published

Success

2 Kafka Publisher is called with a valid waypoint Robot proceeds to the specified

point

Success

Test ID: UxV10 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(testbed tier)

Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)
Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: UxV Connection Test
Preconditions UxV-Node launched, Message bus working
Related Requirement UXV-NET-006, TB-MOM-003, UXV-STO-004
Tools Used OceanScan-MST IMC/RAWFIE Translator (as described in D4.5) Testsuit

Step Action Expected Result Status Remarks

1 Kafka Subscriber is called from another machine Topic is shown with UxV

information being published
Success

2 Kafka Publisher is called with a valid waypoint Robot proceeds to the specified

point
Success

150

Table 124: Verification test of Sensor Data Acquisition 1

Test ID: UxV11 Conducted by: Rob, UoA,

Certh
Date: 27/2/2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration Summit XL

Software Configuration Ros Indigo, Ubuntu 14.04
Test Name: Sensor Data Acquisition 1
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002,UXV-STO-003, UXV-STO-004, UXV-SEN-004, UXV-MGT-

001, UXV-MGT-006

Tools Used Robot, Porto MST Facilities Network, PC

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

3 Acquire sensor data

Data acquired (every sensor

works as specified)
Success

4 Send acquired data Data received Success

Test ID: UxV11 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Sensor Data Acquisition 1
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002,UXV-STO-003, UXV-STO-004, UXV-SEN-004, UXV-MGT-

001, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Acquire sensor data

Data acquired (every sensor

works as specified)
Success Individual sensor

data is tested
4 Send acquired data Data received Success Provides data

gathered by each

sensor placed on

the robot. Data

streamed of every

sensor is tested

individually

 D6.5: RAWFIE Operational Platform Testing and Integration Report

151

Table 125: Verification test of Sensor Data Acquisition 2

Test ID: UxV12 Conducted by: Rob, UoA,

Certh
Date: 27/2/2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration Summit XL

Software Configuration Ros Indigo, Ubuntu 14.04
Test Name: Sensor Data Acquisition 2
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002,UXV-STO-003, UXV-STO-004, UXV-SEN-004, UXV-MGT-

001, UXV-MGT-006

Tools Used Robot, Porto MST Facilities Network, PC

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established Success

3 Instruct the robot to move to a known

location
Robot at the specific location Success

4 Acquire current location data

Location data acquired

(location sensor works as

specified)

Success

5 Send acquired location data Data received Success

152

Test ID: UxV12 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Sensor Data Acquisition 2
Preconditions - UxV is in operation state and the parent UxV node has been launched

- Network Communication is also fully functional
Related Requirements UXV-NET-006, PT-NF-001, TB-MOM-003, TB-MAN-004, UXV-STO-001,

UXV-STO-002,UXV-STO-003, UXV-STO-004, UXV-SEN-004, UXV-MGT-

001, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Instruct the robot to move to a know

location
Robot at the specific location Success Robot is moved to a

precisely located

point and a

comparison is done

later
4 Acquire current location data

Location data acquired (location

sensor works as specified)
Success Localization of the

robot is tested.
5 Send acquired location data Data received Success Provides data about

the location of the

robot. Location is

compared to known

location.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

153

Test ID: UxV13 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Data Storage
Preconditions - UxV is in operation state and the parent UxV node has been launched.

- Sensor node is functional
Related Requirements UXV-NET-006, TB-MAN-004, UXV-STO-001, UXV-STO-002,UXV-STO-

003, UXV-STO-004, TB-MAN-004, UXV-STO-001, UXV-STO-002, UXV-

STO-003, UXV-STO-004, UXV-STO-005, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 A request for storing certain data is done Command received and data is

stored locally
Not tested The UxVs store all

data, thus store

command not

needed
4 After a given mission, data storage in the

system is checked.

Data was correctly stored and

kept.
Success The data is stored

and identified in

the robot system

Table 126: Verification test of Waypoints Processed

Test ID: UxV14 Conducted by: Rob, UoA,

Certh
Date: 15/12/16 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration RobSim-SummitXL, Laser scan, IMU, camera)

Software Configuration RobSim-VirtualBox VM(ROS, Ubuntu 14.04,Gazebo)

Test Name: Waypoints Processed
Preconditions - UxV is in operation state and the UxV parent node has been launched.

- Sensor node is functional, network communication is functional
Related Requirements UXV-NET-006, TB-MAN-004, UXV-STO-001, UXV-STO-002,UXV-STO-

003, UXV-STO-004, UXV-SEN-004, UXV-MGT-006

Tools Used Network, Servers, Personal Computer, Skype

Step Action Expected Result Status Remarks
1 Establish the communication with the UxV

Communication established OK

3 Waypoints are sent to the UxV UxV receives and processes the

waypoints
OK

4 The calculated route is applied to the UxV

The actual trajectory matches

the route calculated by the

navigation.

OK

5 Iterate step 4 until assessment is complete UxV stops, informs and

recalculate its route to next

waypoint if an unexpected

obstacle is found.

OK Recalculation is

done internally by

UxV node

154

Test ID: UxV14 Conducted by: MST Date: Feb 2017 Test Category:

Verification Tests

(Testbed tier)
Hardware Configuration AUV-0, AUV-1, and ASV-0 (as described in D6.1 and D6.2)

Software Configuration OceanScan-MST IMC/RAWFIE Translator (as described in D4.5)
Test Name: Waypoints Processed
Preconditions - UxV is in operation state and the UxV parent node has been launched.

- Sensor node is functional, network communication is functional
Related Requirements UXV-NET-006, TB-MAN-004, UXV-STO-001, UXV-STO-002,UXV-STO-

003, UXV-STO-004, UXV-SEN-004, UXV-MGT-006
Tools Used Neptus Command & Control Software

Step Action Expected Result Status Remarks
1 Establish the communication with the

UxV

Communication established Success

3 Waypoints are sent to the UxV UxV receives and processes the

waypoints
Success Semi-autonomous

mission is tested.

The UxV has to

process a set of

waypoints and

move to each

waypoint in

sequence. The UxV

processes the data.
4 The calculated route is applied to the

UxV

The actual trajectory matches

the route calculated by the

navigation.

Success

5 Iterate step 4 until assessment is

complete
UxV stops, informs and

recalculate its route to next

waypoint if an unexpected

obstacle is found.

Not Tested The UxVs used in

this test are not

equipped with

obstacle avoidance

systems.

2.7 Benchmarking of different Message Bus topologies and configurations

2.7.1 Purpose

The message bus is a key element of the RAWFIE system, both from the point of view of the

features and of the performance. Benchmarking kafka on reference platforms will give

valuable and reliable indications for the dimensioning of the RAWFIE system so that, in

similar conditions, it can increase the chances formeeting the time constraintsduring most of

the experimentation execution.

2.7.2 Scenarios and setup

The detailed description of the test setup, kafka configuration and other hardware and

software parameters are given in section 3.2.4 of deliverable D4.7. The next paragraphs give

the most important aspects of the considered scenarios. Scenario A corresponds to a Single

centralised Apache Kafka Broker. The scenario B corresponds to Multiple Apache Kafka

 D6.5: RAWFIE Operational Platform Testing and Integration Report

155

Brokers with the same topics on each different Testbed. The scenario C corresponds to the

Multiple Apache Kafka Brokers with different topics per testbed.

For scenario A, a Kafka cluster with 4 nodes was created. All VMs were running in 2GB

RAM. Every VM was running a producer and a consumer. Jconsole was used for collecting

metrics and exporting them.

For scenario B and C a cluster of 5 computers with 3 Kafka nodes and 3 Zookeeper instances

were used. Acting as the simulated Testbed environments 2 Virtual Machines each in a

different network were connected to the internet with a regular ADSL connection. In

scenarios B and C, all the messages were sent in the VPN network as was established in all

testbeds for security reasons.

For Scenario A the metrics described in the following were collected. This is the complete

result set for 1000 records. All messages were sent to one topic from the same remote

machine (i.e., running on a different country than the Kafka server). The consumer and

producer run on separate threads. Each dispatched record contains a timestamp that can be

used to measure the round-trip time (RTT). Two scenarios were tested:

a) burst produce/consume: the producer dispatches a burst of 1000 records back to back

to the message bus and the elapsed time is recorded (TX). The consumer reads those

1000 records from the message as soon as they are available and the elapsed time is

recorded (RX). In this scenario we try to measure the latency characteristics of

records that are not used for automatic control of UxVs (i.e., payload sensor data,

basic telemetry) and therefore will not trigger any reply.

b) synchronous produce/consume: the producer dispatches one record to the message bus

and the elapsed time is recorded (TX) it then waits for the consumer to read the record

from the message bus and this elapsed time is recorded (RX). In this scenario we try

to measure the latency characteristics of records that may trigger a reply (i.e.

waypoint references).

For scenarios B and C, Kafka metrics from the TotalTimeMs family were collected. Each

virtual machine was running one Kafka broker and in the case of the third scenario one

Zookeeper instance. In each scenario, we had two producers sending 50 messages per second

and ten consumers running locally in every VM, emulating the traffic in a Testbed

environment where UxV devices performing the produce and consume operations pointed to

their local broker. For Scenario C scenario we also had the Apache Kafka Mirror Maker tool

performing the mirroring from the virtual machines broker to the cluster located in the UoA

premises.

Field trials were also performed for scenario B. For the field trials a UAV mission and USVs

mission were used where devices where handled specifically by RAWFIE implementing

Scenario B as message infrastructure. The field trials were performed in a testbed with high

network complexity where the UxVs were connected either by 4G network or WiFi to a

testbed operator server which in turn route the produced messages in the Kafka cluster in a

different geographical area. Consuming messages required the opposite path. However the

156

performance penalty despite the network difficulties was small. Every participating node in

the experiments was clock synchronized via NTP servers. TotalTimeMs is the total time

taken to service a request (be it a produce, fetch-consumer, or fetch-follower request) from

Jconsole. The TotalTimeMs measurement itself is the sum of four metrics:

• queue: time spent waiting in the request queue

• local: time spent being processed by leader

• remote: time spent waiting for follower response (only when requests.required.acks=-1)

• tresponse: time to send the response

 D6.5: RAWFIE Operational Platform Testing and Integration Report

157

2.7.3 Results

Table 127 summarises the execution performance of kafka in the two metrics in the scenario

A. The test runs over more than 100s and 20s respectively.

Table 127: Sync and Burst cased tested in scenario A

 Sync

Test

(TX/RX)

| 1000

records

Burst Test (TX/RX) | 1000 records

Subscribed Topics 1 1

Elapsed Time 113226

ms

21662 ms

Schema Initialization 8 ms

11 ms

Kafka Producer Initialization 3 ms

3 ms

Kafka Consumer Initialization 5266 ms

5075 ms

Kafka Consumer Shutdown 0 ms 611 ms

Figure 10: Round Trip Time metrics in scenario A

Note: Y axis is duration in millisecond.

In the burst test, which results are displayed in Figure 10, the producer does not wait for the

consumer to complete. The Round Trip Time is measured using the timestamp in the

transmitted/received record. The interpretation of the observed phenomenon is that the first

dispatched messages takes longer to return to the consumer than the next dispatched

messages. This is usually due to on-demand resource allocation, routing, queue

establishment, handshaking, etc. to which kafka may be also sensitive.

102
951

113.1 38.12223

20976

10634.81

6020.21

0

5000

10000

15000

20000

25000

 RTT - Minimum RTT - Maximum RTT - Mean RTT - SD

Sync (ms)

Burst (ms)

158

Figure 11: TX metrics in Scenario A

Note: Y axis is always duration in millisecond.

The TX duration on Figure 11 is the time it takes to pass the message to the Kafka

infrastructure. Only the producer side is accounted for.

We used the produce and fetch-consumer measurements in each scenario and the results are

shown bellow

Figure 12: Mean Time for consuming messages in Scenarios B and C

0 0

641

0.69 20.27

686

0

642

0.68 20.3

0

100

200

300

400

500

600

700

800

TX Duration TX - Minimum TX- Maximum TX - Mean TX - SD

Sync (ms)

Burst (ms)

420

430

440

450

460

470

480

490

500

510

1

4
4

8
7

1
3

0

1
7

3

2
1

6

2
5

9

3
0

2

3
4

5

3
8

8

4
3

1

4
7

4

5
1

7

5
6

0

6
0

3

6
4

6

6
8

9

7
3

2

7
7

5

8
1

8

Mean time for consume in ms

MeanB

MeanC

 D6.5: RAWFIE Operational Platform Testing and Integration Report

159

Figure 13: Mean Time for leader broker to serve messages in Scenarios B and C

Figure 12 shows the results of the consumer measurements from the time that a consumer

sends a request to consume from a partition in the Kafka broker until it’s request is serviced

Figure 13 shows the results of the producer measurements from the time a producer sends a

produce request to the time the leader broker in the UoA Kafka cluster send a response that

the produce request was completed.

From the figures above we can notice that the time for serving a produced message is lower

in scenario C than in the related values in scenarios A and B. This was expected because the

broker in its testbed is assigned to handle a bunch of messages produced and consumed by a

small number of the devices. The small amount of partitions enhances the handling of the

messages between the entities.

On both scenarios B and C, a load balancing mechanism was applied for serving the

messages requests in local and in global layer. The messages were served in the logical

boundaries of a server and delays from road trips were obviated. Scenario C was further

enhanced by avoiding the repartitioning, which is an action that can lead to errors during the

delivery of the messages. Every testbed broker handles topics different from the others.

Partitions of topics in other testbeds are not affected by adding or removing devices or even a

whole testbed.

0

2

4

6

8

10

12

14

16

18
1

4
9

9
7

1
4

5
1

9
3

2
4

1
2

8
9

3
3

7
3

8
5

4
3

3
4

8
1

5
2

9
5

7
7

6
2

5
6

7
3

7
2

1
7

6
9

8
1

7
8

6
5

9
1

3
9

6
1

Mean time for leader broker to serve
a producer message

MeanB

MeanC

160

Figure 14: Mean Time for leader broker to serve messages in Scenarios B and C

Figure 14 summarizes the Mean time for a broker to serve a producer message for scenarios

B,C and the field trials on scenario B. We can notice that the time for serving a produced

message is lower in scenario C than in the related values in scenarios A and B and the field

trials. This was expected because the broker in its testbed is assigned to handle a bunch of

messages produced and consumed by a small number of the devices. The small amount of

partitions enhances the handling of the messages between the entities.

2.7.4 Discussion

It is apparent from the aforementioned metrics that Scenario A with a centralized broker

approach is not an effective solution for meeting the RAWFIE needs, as it was expected. The

high number of messages exchanged in parallel executions of experiments can lead to system

delays as shown in figure 5. The mean time in RTT for a burst of 1000 records was measured

close to 10,6 seconds. However, the performance of system was improved with the use of

cluster architecture. Ultimately, The tests for scenario A were designed to assess the expected

performance of Kafka when using MST producer/consumer implementations. Due to the

slow dynamics of MST watercrafts and the resilience to latency of our on-board the results

were deemed acceptable.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

161

On both scenarios B and C, a load balancing mechanism was applied for serving the

messages requests in local and in global layer. The messages were served in the logical

boundaries of a server and delays from road trips were obviated. Scenario C was further

enhanced by avoiding the repartitioning, which is an action that can lead to errors during the

delivery of the messages. Every testbed broker handles topics different from the others.

Partitions of topics in other testbeds are not affected by adding or removing devices or even a

whole testbed. Each testbed is a micro-system that controls and knows only the devices in it.

This concludes that a local broker needs the half time (8 ms from 16 ms) for serving a

produced message as shown in figure 8. This achievement was the reason for migrating from

scenario A to scenario C as the main infrastructure for RAWFIE message bus.

2.8 Deviations with respect to D6.1, D6.3 and D4.9

This deliverable shows a near exhaustive coverage of the latest platform requirements and all

tests specified in D4.9 have been executed. Almost all tests have been executed with success.

Minor deviations are due to minor features not anymore relevant, for instance the suppression

of a command when the related task is executed spontaneously like in the on-board storage

case.

Also, a few features have been tested in different context or scenario than originally planned

for convenience reason. This is described in the remark column of the concerned test results.

162

Part III: Conclusion & Roadmap

The RAWFIE integration process is mature enough for the operation of the platform. All

requirements are covered by the implementation and tested successfully with only a few

minor deviations, and the correct interaction of the numerous platform components has been

demonstrated.

The platform will of course continue to evolve in the future to address special needs arising

from its users thanks to its design based on popular and easy to use interfaces which favours

evolution.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

163

Part IV: Annex

Annex A Glossary

The RAWFIE glossary consists of generic terms, contributed by all partners, used across the

entire RAWFIE project.

A

Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager

Slice Federation Architecture (SFA) term. The Aggregate Manager API is the interface by

which experimenters discover, reserve and control resources at resource providers.

Avro

Apache Avro: a remote procedure call and data serialization framework

B

Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering

data to appropriate database tables.

Booking Tool

RAWFIE component. The Booking tool will provide the appropriate Web UI interface for

the experimenter to discover available resources and reserve them for a specified period.

C

Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed

provider should ensure, for the communication with Middle Tier software components of

RAWFIE, therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A

component may encapsulate one or more modules (see definition) and should provide a

well defined API for interaction

164

D

Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing

jobs by sending requests to a processing engine which will perform the computations

specified when the analytical task was defined through the Data Analysis Tool to be

transmitted to the processing engine for execution.

Data Analysis Tool

RAWFIE component. The Data Analysis Tool enables the user to browse available data

sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E

EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

RAWFIE component. This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It will provide

features to handle resource requirements/configuration, location/topology information,

task description etc.

Experiment Controller

RAWFIE component. The Experiment Controller is a service placed in the Middle tier and

is responsible to monitor the smooth execution of each experiment. The main task of the

experiment controller is the monitoring of the experiment execution while acting as

‘broker’ between the experimenter and the resources.

Experiment Monitoring Tool

RAWFIE component. Shows the status of experiments and of the resources used by

experiments.

Experiment Validation Service

RAWFIE component. The Experiment Validation Service will be responsible to validate

every experiment as far as execution issues concern.

M

Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the

RAWFIE platforms. Is an SQL-database

 D6.5: RAWFIE Operational Platform Testing and Integration Report

165

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and

receiving messages between distributed systems. It is used in RAWFIE across all tiers to

enable asynchronous, event-based messaging between heterogeneous components.

Implements the Publish/Subscribe paradigm.

Module

A set of code packages within one software product that provides a special functionality

Monitoring Manager

RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at

functional level, e.g. the ‘health of the devices’ and current activity.

N

Network Controller

Manages the network connections and the switching between different technologies in the

testbed in order to offer seamless connectivity in the operations of the system.

L

Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for

starting or cancellation of experiments.

R

Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and

automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool

RAWFIE component. The experimenter can discover and select available testbeds as well

as resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

166

SFA term. This is the means that the SFA uses for describing resources, resource requests,

and reservations (declaring which resources a user wants on each Aggregate).

S

Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added

benefit each schema has versions with it can convert allowable formats to other ones (e.g.:

float to double) It maintains schemas for the data transferred and keeps revisions to be able

to upgrade the definitions as with the simple field conversion. Used in RAWFIE for

messages on the message bus.

Service

A component that is running in the system, providing specific functionalities and

accessible via a well known interface.

Slice Federation Architecture (SFA)

SFA is the de facto standard for testbed federation and is a secure, distributed and scalable

narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided

software solution as a whole.

System Monitoring Service

RAWFIE component. Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels. Predefined notification are triggered

whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool

RAWFIE component. Shows the status and the readiness of the various RAWFIE services

and testbed

T

Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of

scientific theories, computational tools, and new technologies.

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where

UxVs can move around to execute some experiments. In addition, the UxVs are stored in

or near the testbed.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

167

Testbeds Directory Service

RAWFIE component. Represents a registry service of the middleware tier where all the

integrated testbeds and resources accessible from the federated facilities are listed,

belonging to the RAWFIE federation.

Testbed Manager

RAWFIE component. Contains accumulated information about the UxVs resources and

the experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search

for a resource

U

Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services

(LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:

USV - Unmanned Surface vehicle.

UAV - Unmanned Aerial vehicle.

UGV - Unmanned Ground vehicle.

UUV - Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-

time remotely navigate a squad of UxVs.

UxV node

RAWFIE component. A single UxV node. The UxV is a complete mobile system that

interacts with the other Testbed entities. It can be remotely controlled or able to act and

move autonomously.

V

Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation

tool, to communicate with the other components, to handle geospatial data, to retrieve data

168

for experiments from the database, to load and store user settings and to forward them to

the visualisation tool.

Visualisation Tool

RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of

experiments that are already finished

W

Web Portal

RAWFIE component. The central user interface that provides access to most of the

RAWFIE tools/services and available documentation.

Wiki Tool

RAWFIE component. Provides documentation and tutorials to the users of the platform.

 D6.5: RAWFIE Operational Platform Testing and Integration Report

169

Annex B Requirements

The requirements listed in Table 128: Requirements considered for the integration are

considered in the context of the integration.

Table 128: Requirements considered for the integration

PT-WEB-P-001 A web portal interface shall be provided to the users of the platform

to access almost all main functionalities.

PT-BOO-T-003 Booking Tool should delegate all its actions related to Booking of a

resource to the Booking Service

PT-BOO-T-004 Booking Tool may also interact with the Testbeds Directory Service

in order to retrieve information on unallocated testbed resources

PT-REE-T-004 Link to the Booking Tool should be provided

PT-EXM-T-003 Cancellation of running experiments should be possible via Web

Portal

PT-VIS-T-002 A 3D visualization should be available for the tracking of all moving

resources

PT-VIS-T-004 The Visualisation Tool shall provide access to information / features

associated to each UxV device on the geographic map

PT-DAA-T-001 Analysis tool will provide interface to data engine.

PT-DAA-T-002 Analysis tool will provide ability to query available data schemas

PT-DAA-T-003 Analysis tool will be able to read results from Results Database

PT-DAA-E-001 Analysis Engine will be able to query message bus streams

PT-DAA-E-001 Analysis Engine will be able to receive messages from Analysis Tool

PT-DAA-E-002 Analysis Engine will be able to write data to the Results Database

PT-DIR-S-007 The Testbed Directory Service shall provide the possibility to register

new resources belonging to a specific testbed in the RAWFIE

platform, as well as to unregister (delete) resources

PT-CPV-001 A tool for translating EDL into user directives shall be provided

PT-CPV-002 An experimenter should have the opportunity to use a code

generation engine

PT-CPV-003 Experiments defined via EDL shall be validated after their authoring

PT-CPV-004 The compiler and validator should communicate with the authoring

tool in order to transfer error indications and hints for solving them

PT-BOO-S-006 Booking Service should be able to compute and return feedback on

conflicting bookings for a provided booking request

PT-LAU-S-001 Launching Service should support short-term or manual launching of

an experiment initiated directly by an experimenter

PT-VIS-E-001 The Visualization Engine shall handle the communication with the

Message Bus, for the information that will be coming from the UxVs

PT-EXP-C-002 RAWFIE platform shall allow experimenters to remotely navigate

UxVs.

PT-EXP-C-006 The Experiment Controller shall support receiving feedback at

regular intervals from all testbed facilities about the progress of the

experiment in this time interval

170

PT-EXP-C-008 The Experiment Controller shall be able to continuously feed the

front-end tier (Experiment Monitoring Tool) giving the experimenter

a clear view of the experiment workflow as a whole

PT-EXA-T-001 Experiment Description Language (EDL) shall be used as a language

for the definition of experiment scenarios

PT-EXA-T-002 The EDL shall allow the definition of all necessary requirements for

an experiment

PT-EXA-T-003 For each defined experiment specific metadata, i.e. name, version,

date and description shall be defined.

PT-EXA-T-004 An experimenter shall be able to provide initial conditions and/or

configuration parameters for an experiment

PT-EXA-T-005 An experimenter shall be able to manage/guide the available booked

resources during experiment authoring

PT-EXA-T-008 An experimenter shall be able to provide navigation or movement

directives during experiment authoring

PT-EXA-T-009 An experimenter should be able to create groups of UxVs resources,

for which specific directives will apply.

PT-EXA-T-010 A textual editor shall be provided for the authoring of RAWFIE

experiments

PT-EXA-T-011 A visual/graphical editor shall be provided for the authoring of

RAWFIE experiments

PT-EXA-T-012 Platform shall allow saving, editing and/or deletion of an experiment

defined via EDL

PT-EXA-T-013 The visual editor should allow the definition of movement and

location waypoints from a map

PT-EXA-T-015 Validation of EDL script should be possible prior to or during saving

PT-EXV-S-001 RAWFIE shall provide a validator to constantly check experiment

scenarios during runtime

PT-EXV-S-002 The validation service should perform syntactic checking

PT-EXV-S-003 The validation service should perform semantic checking

TB-MOM-004 Testbed monitoring manager should be able to transmit the current

status to the System Monitoring Service.

TB-REC-003 The Resource Controller shall receive location messages from the

vehicles at regular intervals

TB-REC-005 For the experiment accomplishment the Resource Controller shall

operate in close coordination with the Experiment Controller

TB-MAN-005 Testbed Manager shall be periodically informed about the status of

all running experiments in the testbed

UXV-NET-006 UxV communication interoperability with RAWFIE (incoming)

UXV-NET-007 UxV communication interoperability with RAWFIE (outgoing)

UXV-SEN-005 UxVs should sent a notification to the Resource Controller when

they reach the desired location

 D6.5: RAWFIE Operational Platform Testing and Integration Report

171

References

[1] Xtext: https://eclipse.org/Xtext/index.html
[3] OpenLayers: http://openlayers.org/

D4.3 Pilot Experimentation, Scenarios for Validation and Testing (a)

D4.4 High Level Design and Specification of RAWFIE Architecture (b)

D4.5 Design and Specification of RAWFIE Components (b)

D4.6 Pilot Experimentation Scenarios for Validation and Testing (b)

D4.8 Design and Specification of RAWFIE Components (c)

D4.9 Pilot Experimentation Scenarios for Validation and Testing (c)

D5.3 Development of RAWFIE Components (b)

D6.1 RAWFIE Operational Platform Testing and Integration Report (a)

D6.2 RAWFIE Platform Validation (a)

D6.3 RAWFIE Operational Platform Testing and Integration Report (b)

https://eclipse.org/Xtext/index.html
http://openlayers.org/

