
 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

1

Road-, Air- and Water-based Future Internet

Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number
and Title

D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

Confidentiality PU Deliverable type
1
 R

Deliverable File D4.7 Date 30.04.2016

Approval Status
2
 2nd Reviewer Version 1.0

Contact Person Marcel Heckel Organization Fraunhofer

Phone +49 351 / 4640-645 E-Mail marcel.heckel@ivi.fraunhofer.de

1
 Deliverable type: P(Prototype), R (Report), O (Other)

2
 Approval Status: WP leader, 1

st
 Reviewer, 2

nd
 Reviewer, Advisory Board

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

2

AUTHORS TABLE

Name Company E-Mail

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Vasil Kumanov Aberon vasil.kumanov@aberon.bg

Kakia Panagidi UoA kakiap@di.uoa.gr

Giovanni Tusa IES Solutions g.tusa@iessolutions.eu

Philippe Dallemagne CSEM Philippe.Dallemagne@csem.ch

Damien Piguet CSEM damien.piguet@csem.ch

Kiriakos Georgouleas HAI Georgouleas.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

REVIEWERS TABLE

Name Company E-Mail

Philippe Dallemagne CSEM Philippe.Dallemagne@csem.ch

Giovanni Tusa IES Solutions g.tusa@iessolutions.eu

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

3

DISTRIBUTION

Name / Role Company Level of

confidentiality
3

Type of deliverable

ALL PU R

CHANGE HISTORY

Version Date Reason for Change Pages/Sections

Affected

0.1 2017-03-08 Start editing 2
nd

 version of the architecture all

0.2 2017-04-05 Highlighted needed changes for Real time contains,

and SFA

Section 3

0.3 2017-04-06 Removed content that did not change all

0.4 2017-04-10 Updated SFA integration description Section 3.6

0.5 2017-04-10 Updated descriptions of Resource Explorer Tool,

Booking Service, Testbed Manager and Monitoring

Manager

Section 4

0.6 2017-04-20 Updated Architectural Overview Section 3

0.7 2017-04-21 Added descriptions for the Proximity Component Section 4.2

0.8 2017-04-26 Updated SFA/SAMANT description Section 3.6

0.9 2017-04-27 Updated Real-time constrains Section 3.2

0.10 2017-04-28 Updated Message Bus Section 3.8

0.11 2017-04-30 Version ready for first review all

0.12 2017-05-01 Review all

0.13 2017-05-03 Review 2 all

1.0 2017-05-09 Final version all

3
 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium

members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

4

Abstract:

This deliverable describes the third version of the RAWFIE high-level architecture. An overview

of all components and their interaction is given.

Several changes were made on the architecture to reflect the latest design choices and

improvements brought during the third design round .

This is the last deliverable of the RAWFIE High Level architecture documents’ series. Further

changes on high level architectural elements, if any, will be reported in the last deliverable of

the RAWFIE components’ design and specification documents’ series, D4.8.

Keywords:
architecture, components, interactions

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

5

Part II: Table of Contents

Part II: Table of Contents .. 5

List of Figures ... 7

List of Tables ... 8

Part III: Executive Summary .. 9

Part IV: Main Section ... 10

1 Introduction ... 10

1.1 Scope and overview of D4.7 .. 10

1.2 Relation to other deliverables ... 10

2 Overview of changes ... 10

3 Architectural Overview ... 11

3.1 Components integration ... 13

3.2 Real-time constraints and impacts in the architecture .. 13

3.2.1 Rationale ... 13

3.2.2 Approach ... 14

3.2.3 Techniques .. 14

3.3 Front-end Tier .. 18

3.4 Middle Tier ... 18

3.5 Data Tier ... 19

3.6 SFA compatibility .. 20

3.6.1 Developments from the SAMANT project ... 21

3.6.2 Resource advertising ... 25

3.6.3 Resource editing.. 27

3.6.4 Resource booking.. 29

3.7 Testbed Tier.. 31

3.7.1 Common Testbed Interface ... 31

3.7.2 Constraints for testbed integration .. 32

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

6

3.7.3 Constraints for UxV integration.. 33

3.8 Message Bus ... 34

3.8.1 Benchmarking and dimensioning Message Bus in RAWFIE 35

4 Components ... 39

4.1 Front End Tier .. 39

4.1.1 Resource Explorer Tool .. 39

4.2 Middle Tier ... 40

4.2.1 Booking Service .. 40

4.3 Testbed Tier.. 41

4.3.1 Testbed Manager ... 41

4.3.2 Monitoring Manager ... 42

4.3.3 UxV – Proximity Component ... 42

Part V: Annex ... 44

Annex A Abbreviations.. 44

Annex B Glossary .. 47

References ... 54

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

7

List of Figures

Figure 1 – RAWFIE architecture .. 12

Figure 2: RAWFIE Updated Reference Architecture ... 21

Figure 3 – Resource advertising ... 26

Figure 4 – Resource Edit/Update .. 28

Figure 5 – Resource Booking ... 30

Figure 6 – Scenario A design .. 36

Figure 7 - Scenario B design ... 38

Figure 8 – Scenario C design .. 39

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

8

List of Tables

Table 2: Common abbreviations ... 46

Table 3: Notation .. 47

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

9

Part III: Executive Summary

This deliverable describes the final high-level architecture of RAWFIE, with a special attention

to the changes that the consortium brought to it during the third design round. It is the third

release of this deliverable and, as such, it aims at providing the final architectural overview

together with the main changes / updates, avoiding to repeat all concepts and information

provided in the previous versions.

Initially, a general overview of the architecture is given, describing the general component

integration, the four abstraction tiers (front-end, middle, data, testbeds), the SFA compatibility

and the used MOM.

Then, changed and new components are described and their relation to other components are

listed.

The requirement mapping and the state of the art analysis of D4.1 is still valid and not repeated

in the deliverable.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

10

Part IV: Main Section

1 Introduction

1.1 Scope and overview of D4.7

D4.7 finalises the RAWFIE architecture that has been elaborated in three phases, with D4.1 and

D4.4 as initial and intermediate results. It reflects all the necessary changes that have been done

or need to be done based on the experience of the first and second implementation period and the

decisions of the third design round.

The section “3 Architectures Overview” of D4.4 was updated with information in the present

deliverable. The section “4 Components” of D4.4 is in many parts still valid and it now describes

only the components that have been added or changed. Also the section “5 Requirement

mapping” of D4.4 is still valid and will not be repeated.

1.2 Relation to other deliverables

D4.7 is an update of D4.4 (and D4.1) so it will share many of the contents with them.

The architectural definition was updated using the detailed updated requirement analysis that was

given in D3.3 (which also reflects the experiences of the first and second implementation period.

D4.8 will provide updated detailed components descriptions, based on the architecture defined in

D4.7. Therefore, this deliverable aims at providing information about the components and their

interfaces only at a high level.

D4.9 will provide information on verification and validation plans and scenarios for the

architecture.

2 Overview of changes

This chapter lists the most important changes made in comparison to D4.4:

¶ Section “Architectures Overview” updated, especially:

o Interoperability whit SFA

o Message Bus topology

¶ Section “Components” only contains the components that have been changed or added

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

11

o Changed: Resource Explorer Tool, Booking Service, Testbed Manager and

Monitoring Manager

o Added: UxV – Proximity Component

¶ Annex “A: Relevant technologies” (D4.4) and “State of the Art” (D4.1) still valid (no

new technologies introduced) and is not repeated.

3 Architectural Overview

This chapter gives an overview of the architecture and the various components in each tier.

Figure 1 shows an overview of the RAWFIE high level architecture after the 3
rd

 design iteration:

it provides updates and enhancements to the one presented in the D4.4, being the result of the

continuous activities of the consortium for the refinement of the functional requirements. It also

takes into consideration the outcomes of the second prototype implementation (see WP5). The

main design principles are described in the following sub-sections.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

12

User /
Experimenter

USV / AUV UGV UAV

Booking tool

EDL Compiler
& Validator

Experiment
Validation

Service

UxV Navigation
tool

On-Board
 storage

SensorS &
Localization

Users & Rights
Service

Booking
Service

Web Portal

Resource
Explorer tool

Monitoring

tool
Visualization

tool
Data analysis

tool

Experiment
Controller

Launching
Service

Visualization
engine

Data analysis
engine

System
Monitoring

Service

On-board
processing

Network
 Communication

visual/graphical
editor for the EDL

textual editor
for EDL

Manual
Launching

Message Bus (payload:JSON or Avro)

HTML/REST, AJAX, WebSockets

JDBC,
LDAP,
etc.

Resource
Controler

Network
Controler

Device
management

Resource
Controler

Network
Controler

Testbed Manager

Resource
Controler

Network
Controler

Testbeds
Directory

Service

SFA client

Wiki
tool

Accounting
Service

HDFS/HBase

Measurements

PostgreSQL

Master Data

OpenDJ

Users & Rights

Whisper

Analysis Results

Common Testbed Interface

M
e

s
s
ag

e
 B

u
s

SFA Aggregation Manager

Local DB

SFA Aggregation Manager

Local DB

SFA Aggregation Manager

Local DB

S
ch

e
m

a
 R

e
g

is
tr

y

Resource
Advertising (RSpec),
 Resource Booking

Monitoring Manager

Testbed Manager

Monitoring Manager

Testbed Manager

Monitoring Manager

Proximity
Component

SFA client /
MySlice

User
 authentication
& registration

Figure 1 – RAWFIE architecture

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

13

3.1 Components integration

RAWFIE follows the Service Oriented Architecture [1] paradigm: all components provide

clearly defined interfaces, so that they can be easily accessed by other components, and their

business logic can be easily updated, with new functionalities without affecting the interfacing

with other components. Interacting with them is made possible by the use of remote service

control protocols such as Representational State Transfer (REST) resource invocation style or the

Avro RPC [3], which are based on the popular HyperText Transfer Protocol (HTTP). These

application protocols are relying on any communication system that supports HTTP, such as the

Internet protocol stack (aka. IP or TCP/IP).

Additionally, RAWFIE uses a message-oriented middleware (via a Message Bus) where suitable,

which offers a convenient communication model providing distribution, replication, reliability,

availability, redundancy, backup, consistency, decoupling of components and services across

distributed heterogeneous systems. The Message Bus communication system interconnects

components in the same tier, as well as components located in different tiers (e.g. between

Middle Tier and Testbed Tier). It can be used for asynchronous notifications and asynchronous

method calls / response handling. For example, it is used for transmitting measurements that are

routed from producers (e.g. UxVs) to the consumers pertaining to the Middle Tier (e.g.

Experiment Monitoring, Visualisation Engine) as well as for information (including events) that

generally addresses multiple components. See also section 3.8 for more information of the

communication through the message bus.

Chapter 4 (also of D4.4) gives more information about the components highlighted in Figure 1.

Since the present deliverable mostly focuses on providing information about changes with

respect to the previous versions, the reader is invited to refer to the corresponding chapters of

D4.4 for complete information about all components. As usual, a more detailed and up to date

description of interfaces and interactions between the various components will be given in D4.8.

3.2 Real-time constraints and impacts in the architecture

3.2.1 Rationale

The RAWFIE application engages highly dynamic vehicles, such as aerial vehicles or drones

(UAVs). This implies providing fast response time to meet their timing requirements. Dealing

with less dynamic vehicles such as UGV or maritime vehicles implies providing more relaxed

response times. However, in all cases, there are operational boundaries in terms of time, be they

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

14

short or long, that must be dealt with by the operational entities and stakeholders (the vehicle

itself, the experimenter, the resource manager and possibly many others).

Real time constraints for the communication between Middle Tier and Testbed components, and

between Testbed components, may depend on the type of experiment as well as on the type of

devices involved. Navigation of UxVs may require low latency, in order to ensure proper control

and, as a consequence, safety of the devices themselves and their environment, including people.

3.2.2 Approach

The consortium continuously identifies and elaborates on time constraints and real time

requirements for several types of devices that may be involved in the RAWFIE experiments, in

particular with the help of owners/providers of UxVs, first those pertaining to the consortium,

then those with new devices that will join the RAWFIE project in the context of the Open Calls.

The consortium also evaluates how these constraints may affect the RAWFIE architecture and

the chosen technologies.

3.2.3 Techniques

In a system like RAWFIE, dealing with latency and other real-time operations implies checking

for the properties of the components of the system and their behaviour, independently or once

integrated as a system.

Therefore, the RAWFIE system is a typical Cyber-Physical Systems (CPS), since it involves

concurrent closed loop process for, e.g. controlling the UxVs. As such, its architecture and its

components can benefit from the work done in this domain. Most of the work done for process

control in critical or real-time applications, which includes a loop involving sensing,

transmission, processing and actuation (in the case of RAWFIE, this corresponds to the UxV

control), relates to Cyber-Physical systems. CPS covers many requirements, such as timeliness,

efficient resource usage, adaptation to changing environments and collective organisation. Like

in other CPS systems, RAWFIE envisages the presence of components (e.g Resource Controller

implemented by consortium partners or similar proprietary controlling components provided by

testbed or UxVs owners), needed to transmit the data collected in the field, analyse the data,

collectively take decisions and act on the real world by sending back commands to actuators,

hence closing the control loop correctly in terms of computation, time and location.

Many of such systems aim at dealing with real-time constraints, both on the task execution, such

as the completion of tasks before specific deadlines, and on the communication, such as bounded

transmission of data (from sensors, to actuators, etc.), including over wireless links comprising

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

15

multiples hops [29]. Task scheduling can use the traditional scheduling approaches such as

Earliest Deadline First or Time-Triggered. The baseline is that communication and task are

closely related and the scheduling can be expressed in communication terms [25]. Typical

approaches aim at providing reliability, adaptivity and real-time by using a distributed real-time

protocol [27] and by decoupling the communication from the local application [26], while

keeping temporal interdependencies through communication interactions.

The mobility of the vehicles is intrinsic to RAWFIE. Mobility increases the link variability and

drops of wireless links that are typically used for reaching mobile vehicles. As an consequence,

mobility calls for appropriate techniques, such as handover (found in GSM, LTE or IEEE

802.11), which is a convenient feature but that introduces additional unpredictable delays.

The RAWFIE application may benefit of (and will likely require) end-to-end real-time QoS for

UAV, which [28] provides. These results can be used in RAWFIE either directly if the existing

technology is adopted or indirectly if the technique is adapted to the case of RAWFIE and

implemented for it.

Constraints identification. Timing requirements can be extracted from several sources, such as

regulation and local recommendations, from technical notes issued by UxV manufacturers,

conclusions given by previous similar experiments and other application requirements. For

example, the UxV manufacturer will require a round trip time of n seconds; the regulations may

require to be able to limit the deviation of a trajectory or path to x meters, which translates into a

control period given by function f(x, v, w, …), which is a formula, taking into account the speed,

weight and other variables. Other deployments of UxV in a similar setup may have shown that

the delay between issuing a command from the control centre to the UxV shall be at most y

seconds, where y can span from 0.1 to hundreds, etc. However, the design of RAWFIE platform

reduced the time constraints that could be imposed by UxV manufacturers. One of the basic

principle of RAWFIE is that the device executes commands coming from Resource Controller

sequentially, i.e. while a device is in operating mode then either executes a command from

Resource Controller or waits at the same waypoint. Other emergency cases may need the device

to return to the last waypoint/to the initial point of experiment or the manual operation and safety

return "home" from the man-on-the-field (testbed operator). Therefore UxV manufactures

haven't rose any time constraints that apply during the operation of the devices.

Constraints specification. The specification of time constraints should include the corrective

action (that corresponds to the fallback scenario) to be performed in case the constraint is not

met, e.g. activate emergency mode or return to a safe location, etc.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

16

All identified constraints must be translated into time-based conditions, e.g. including durations,

that will be checked by the appropriate entities in the operational system: for example the

visualisation tools needs to be updated with the location of a UxV every hour, if not, then a

question mark should be displayed in red at the latest know position. The corresponding pieces

of code should be created in the EDL editor (constraint and fallback scenario).

Note that the fallback mechanisms may be implemented in components other than the detector of

the condition. Hence, the architecture should allow for notification mechanisms across the

RAWFIE components, at least those participating to a given experiment and across those of a

given testbed. This also requires that the interfaces of the services provision for such notification

parameterisation (e.g. parameters or subscription to events).

Constraints verification. The verification of the constraints is done by the entities for which

these constraints have been specified in the description of the entity, using the EDL. The

implementation of the verification is left to the developer of the entity. A possible yet simplistic

way is to have a timer dedicated to the constraint, that is started on the initial conditions (usually

after a system reset) and reset when specific conditions are met; if these conditions are not met,

then the routine associated to the elapsed timer is executed.

The verification of time constraints during the execution of the component services can be

implemented using timers, watchdogs, still alive notifications or periodic status exchanges.

Sequence numbers and time-stamping of the information, including the information collected by

on-board sensors, is a primary and solid basis for checking the order, causality and the time

consistency of events and actions [25].

This will allow for the implementation of an event abstraction in RAWFIE.

Time constraints in the tools and services.

Time constraints on the tools or components related to the user interactions are limited to the

automatic log-out due to inactivity, that is triggered after 10 minutes of absence of any request

received by the server from a given user. This impacts:

¶ Web Portal

¶ Wiki Tool

¶ System Mentoring Tool - IcingaWeb2 page

Some calls of services in the RAWFIE architecture (such as the database) are also constrained by

temporal parameters: The elapsed timer (timeout) means that the call was not successful

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

17

¶ REST service calls over HTTP have a response timeout of 1minute.

¶ SQL connection timeout: 1 minute

¶ LDAP connection timeout: 1 minute

The actions if a timeout occurs are returning error values in the service calls and showing error

pages in the front-end tools.

EDL support for time constraints

The Experiment Description Language allows the experimenters for specifying a few time

constraints in the experiment scenarios. It is the case for planning and guidance management.

The management of waypoints is available through the time perspective. The parallel execution

is not implemented, since this feature has not yet been requested. The execution at pre-defined

intervals, like in the SMIL approach, is possible by the invocation of algorithms at specific time

intervals. A specific example is given below:

Node

 ID rawfie.mst.auv - 1

 Route[

 WP<0, +0.0, +0.0, +0.0>

 WP<1, +2.0, +1.0, +0.0>

 WP<5, +23.0, +25.0, +0.0>

 WP<8, - 0.0, +12.0, +0.0>

 WP<10, - 12.0, +15.0, +0.0>

 WP<15, +11.0, - 17.0, +0.0>

]

 Sensor[Time 7 Name Temperature set Activated]

 DataManagement[Time 8 Algorithm dataReporting(status = 1)]

 DataManagement[Time 15 Algorithm dataReporting(status = 0)]

 Sensor[Time 15 Name Temperature set Deactivated]

~Node

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

18

The above example exemplifies how to manage the waypoints for a node. The DataManagement

commands are examples of the execution at specific intervals.

3.3 Front-end Tier

A web based GUI is provided that enables the user to interact with the RAWFIE system. Most of

the available frontend tools are integrated into a common web app framework, with some third

party web applications accessible via web links.

The aim of the frontend tier is to provide centralised access to a single RAWFIE web portal that

integrates all the functionalities available for the experimenters.

It communicates with the middle tier services via commonly used web technologies (SOAP,

HTTP/REST, AJAX, and Web Sockets). Some server side back-ends of the tools may also

directly access the Data Tier via repository specific protocols (i.e. JDBC).

3.4 Middle Tier

The Middle Tier is made of a collection of services that provide several management and

processing functionalities. These services implement the core functionality of the RAWFIE

platform. Middle Tier entities will support deployment in cloud environments.

The internal communication between the different services uses REST and Avro RPC [3]

interfaces for direct and Request/Response based communication, as well as the Message Bus for

asynchronous notifications. The communication to the Data Tier uses the application specific

protocols, like JDBC, LDAP, as well as Java-HDFS-API or WebHDFS REST API [13] or Hbase

API for accessing data stored in the Hadoop Distributed File System (HDFS) [14] and Hbase

[30].

The communication with the Testbed Tier is mainly done via the Message Bus.

Every RAWFIE component described in Chapter 4 uses the above communication interfaces for

data exchange with the other components. The component descriptions mention these data

exchanges as input and output communication. Since the present deliverable mostly focuses on

providing information about changes with respect to the previous versions, the reader is invited

to refer to the corresponding chapter 4 of D4.4 for complete information about all components.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

19

3.5 Data Tier

The Data Tier consists of several repositories and databases. There is no direct interconnection

between the components in this tier (relation will be indirectly realised via Middle Tier

components).

The different repositories are:

- Master Data Repository: to contain all the management data sets (experiments, EDL

scripts, bookings, testbeds and resources, status information of testbeds and their

resources, and so on) of RAWFIE. It will only be small to medium sized and have

relational dependencies. This is the main reason for using a relational database [5] for

storing this data. PostgreSQL [6] with PostGIS extension was chosen for the

implementation, as it is well supported, open source and stable, and to be able to easily

handle geo-referenced data

- Measurements Repository: that will use a big data storage system for storing the large

number of measurements that will be coming from the sensors on board of the UxVs

during the experiments. The popular big data solution “Hadoop Distributed File System”

([14]) was chosen for this purpose. In addition, the NoSQL system HBase [30] (running

on top of HDFS) was tested to better manage the data sets. It will be further integrated the

3
rd

 implementation iteration. Also Kafka Connect for Hbase [31] will be used to store the

messages from the message bus to Hbase.

- Analysis Results Repository: uses a dedicated database for performing the Data Analytics

job over the results of the experiments. The Graphite [17] data analysis framework will

used with it database called Whisper [18]

- Users & Rights Repository: uses a LDAP [7] repository, as LDAP is a de facto standard

for user management. It stores all user related data (name, organisation, address,

password) and group memberships (roles based access control). The selected

implementation is OpenDJ [8].

Except for the Analysis Results Repository, all used repository systems (PostgreSQL [9], HDFS

[14], OpenDJ [10]) support replication, hence they do provide fault tolerance. In case of data loss

in the Analysis Results Repository, they can be recomputed using data stored in the

Measurements Repository

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

20

3.6 SFA compatibility

RAWFIE is a FIRE project. Therefore, it needs to provide compatibility with other FIRE

facilities as well as adheres to the concepts and services prescribed by the SFA architecture. We

chose the approach of a transparent integration of SFA Aggregate Manager as described in this

section. This will allow RAWFIE platform to be part of other FIRE enabled federations. In order

to achieve the required level of SFA compatibility the following actions are foreseen:

1. Implementation of a modified version of SFA Aggregate Manager (AM) at testbed level

that will support Geni API V3 [12] and will be able:

¶ To support/handle the resource specification (RSpec [20])) needed to list,

describe and possibly advertise testbed local resources which are whole UxV

systems.

¶ To handle reservation of UxV resources at testbed level, a process which

significantly differs from resource reservation in other FIRE facilities since it is

not an one step process (reservations may need to be in pending state waiting to

be approved by a testbed authority).

2. Modification of the MySlice interface responsible for providing access to SFA facilities

in order to support the RAWFIE authorization model that prescribes users with certain

roles as well as the use of LDAP for storing this info.

SFA compatibility will be achieved in a mostly transparent way ensuring minimal effects to the

core RAWFIE modules. Details about the SAMANT project and the integration procedure are

given in 3.6.1.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

21

3.6.1 Developments from the SAMANT project

Figure 2: RAWFIE Updated Reference Architecture

The goal of the SAMANT architecture is to provide the appropriate tools and software

enhancements at the RAWFIE testbed or federation level, to support functionalities related to

resource discovery, booking and reservation, provisioning and release by experimenters, while

addressing at the same time the corresponding authentication and authorization issues at the

RAWFIE federation. Moreover, it is sufficiently versatile in terms of communication interfaces

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

22

and interoperability with external/3
rd

 party tools as well as other testbeds, since it supports the

Slice-based Federation Architecture (SFA) [21] protocol for this purpose. It uses XML schemas

(GENI RSpecs v3) [20] for describing resources life cycle. SAMANT aims to exploit the

benefits of a semantic web approach at the upper tiers of the federation solution, using data

semantics, knowledge inference and reasoning. In the context of the SAMANT project, a

semantic information model will be adopted for representing and linking RAWFIE resources, by

re-using and extending existing standard semantic models, for the federated RAWFIE

environment. Moreover adopting the use of a semantic registry repository for testbeds and

resources will enable experimenters to find and book resources more easily. For this purpose,

SAMANT will adopt and extend the Open-Multinet (OMN) ontology suite [22] [23], the

semantic information model for federated infrastructures management. Therefore, based on the

framework described in [24], the implementation of an Aggregate Manager will allow the

parallel use of ontology-based RSpecs and GENIv3 RSpecs, compatible with existing SFA–

based testbed federations, while will support the various functionalities related to lifecycle

management of RAWFIE resources and testbed administration requirements.

Figure 2 provides an updated high-level view of the parts of the SAMAMT reference

architecture that will support the resource reservation mechanisms of RAWFIE testbeds. The

core software module is the SAMANT Aggregate Manager (SAM) which will be based on the

(SFA) NITOS
4
 Aggregate Manager design principles. One instance of the SAM module will be

deployed in each testbed in order to handle the reservation process of the respective resources.

The SAM will maintain semantic descriptions of testbed resources to a triple-store database. The

SAM will expose two different APIs – a REST API and an XML-RPC API. As it is described in

details in the following sections, the REST API exposes functionality based on requirements of

all actors involved, allowing the management of the testbed resources from an administrative

perspective but also from a client/experimenter perspective. Testbed administrators can add,

update, remove, and perform semantic-based queries for the resources of the specific testbed.

Experimenters are allowed to utilize the REST API throughout the lifecycle of an experiment in

order to query, reserve and release resources. The REST API is expected to be utilized by

MySlice
5
 tool that provides a web interface and a programmable API from which users can

register to the RAWFIE federation and manage aspects of their experiments’ lifecycle. The

XML-RPC API is GENI V3 compatible thus allowing RAWFIE testbeds to become members of

4
 https://github.com/NitLab/Central_Broker

5 https://www.myslice.info

https://www.myslice.info/

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

23

SFA federations. This API is expected and able to be utilized by any kind of GENI V3 compliant

tools.

3.6.1.1 REST ï API

The REST API is tailored to support the discovery, reservation and release functionality for

RAWFIE resources. It leverages the OMN-based resource descriptions stored in the local triplets

repository (RDF Triples) to provide the users/experimenters with semantically enriched

information regarding the resources managed by the respective testbed. From their side, the users

are then able to allocate and provision resources that correspond to their experiments’

specifications, as well as release these resources when no longer used. An X.509 authentication

system is facilitated to authorize the aforementioned actions.

Complementary to this functionality, this API will expose the essential administrative

management methods; namely, RAWFIE resource description creation, update and deletion will

be supported.

The following table provides a short summary of these methods:

Method Description

ex
p

er
im

en
te

r

list_resources Return information about available resources or resources

allocated to a slice.

describe Return information about resources allocated to a slice.

allocate (optional) Allocate resources as described in a request RSpec argument

to a slice with the named URN. On success, one or more

slivers are allocated, containing resources satisfying the

request, and assigned to the given slice. Allocated slivers are

held for an aggregate-determined period.

renew Request that the named slivers be renewed, with their

expiration extended.

status Gets the status of a sliver or slivers belonging to a single slice

at the given aggregate.

shutdown_sliver Perform an emergency shutdown of a sliver. This operation is

intended for administrative use

ad
m

in
 create Create a resource description on the respective testbed.

update Update a resource description on the respective testbed.

remove Remove an existing resource description on the respective

testbed.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

24

The MySlice framework will be adapted in order to communicate with each testbed’s REST API

thus providing the users with RAWFIE federation-wide results. This client-server

communication, throughout each reservation’s lifecycle, will be based on JSON serialized data.

3.6.1.2 XML-RPC API

The XML-RPC API exposed by SAM, enables interoperability with existing tools for

experimenters (e.g. omni, jFed etc) and allows federation with other testbeds or testbed

federations that confront to the SFA - GENI API v36 specification. One of the core innovations

of the SAMANT project will be the semantic description of experimental resources (UxV

domain ontology for OMN suite) and the development of the respective management

mechanisms.

In order to be SFA compliant the API method calls and the respective semantic descriptions need

to be translated into the respective SFA data models (i.e., RSpec v3). The following RSPEC

types will be utilized within the context of SAMANT:

¶ Advertisements will be used to describe the resources available on a testbed. They

contain information used by clients to choose resources (components).

¶ Requests will specify which resources a client is selecting from the testbed.

¶ Manifests will provide useful information about the slivers actually allocated a

client/experimenter.

In addition, the existing SFA XML-RPC API methods will need to be adapted in order to support

the usage of the SAMANT semantic triple store. The following table provides a short summary

of the corresponding methods:

Method Description

get_version Return the version of the GENI Aggregate API

supported by this aggregate.

list_resources Return information about available resources or resources

allocated to a slice.

describe Return information about resources allocated to a slice.

allocate (optional) Allocate resources as described in a request RSpec argument

to a slice with the named URN. On success, one or more

6
 http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

25

slivers are allocated, containing resources satisfying the

request, and assigned to the given slice. Allocated slivers are

held for an aggregate-determined period.

renew Request that the named slivers be renewed, with their

expiration extended.

status Get the status of a sliver or slivers belonging to a single slice

at the given aggregate.

shutdown_sliver Perform an emergency shutdown of a sliver. This operation is

intended for administrative use

3.6.1.3 MySlice Tool and User registration

Based on the RAWFIE requirement to use LDAP as a source of users’ authentication, the

architecture of the MySlice frontend has evolved as follows:

¶ The web login module of MySlice will be modified to authenticate users against LDAP.

¶ At the first connection to MySlice, the LDAP information about the user will be inserted

into MySlice database that will generate an X509 certificate embedded into an XML

Credential describing the rights of the user.

¶ The communication toward the AMs of the testbeds remains the same using X509

certificates.

¶ A synchronization process will run periodically to disable or remove users form MySlice

that were disabled or removed from LDAP.

The SFA model of resources reservation considers compute resources like servers or VMs with

an automated approval. In the context of RAWFIE, the reservations of UxVs requires most of the

time a manual approval. The reservation status will evolve from a binary state reserved or not, to

a multiple steps status (as mentioned in the previous section). Therefore, the scheduler plugin in

MySlice will be extended to follow this model.

3.6.2 Resource advertising

The RAWFIE system provides the Resource Explorer Tool for the users to browse the available

testbeds and UxVs. SFA also provides a resource advertising mechanisms: The Aggregate

Manager provides “RSpec” [20] for each UxV. Both databases (Maser Data repository am AM

Triple Store) are kept in sync (see Resource Editing section). The process, which is depicted in

Figure 3, is described and in the next paragraph.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

26

User /
Experimenter

Booking tool

Web Portal

Resource
Explorer tool

SFA client

Testbeds
Directory

Service

Booking
Service

Users & Rights
Service

1, 6

2, 5

3, 4

1, 4

PostgreSQL

Master Data

OpenDJ

Users & Rights

2, 3
SFA Aggregate Manager

Triple Store

Figure 3 – Resource advertising

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

27

RAWFIE Resource advertising:

1. User open the Resource Explorer Tool

2. Resource Explorer Tool loads the data from the Testbed Directory Service

3. Testbed Directory Service queries the data from the Master Data repository

4. Master Data repository returns the data

5. Testbed Directory Service processes and filters the data and returns it to the Resource

Explorer Tool

6. Resource Explorer Tool display the data to the user

SFA Resource advertising:

1. User opens its SFA client

2. SFA client requests the AM from the known testbed for RSpecs

3. AM loads the data an retuns it to the SFA client

4. SFA client show the data to the user

3.6.3 Resource editing

SFA Aggregate Manager provides an administration interface/tool that could be used to

add/update/delete resources in the internal triple store database. However in the context of

RAWFIE this administration tool will be completely disabled. Resource editing/update &

deletion will be done locally at the testbed level and will be achieved via the Testbed Manager’s

UI. RAWFIE web portal will permit only visualization of available resources through the

Testbed Directory Service.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

28

Testbed Operator/
Administrator

Booking tool

Web Portal

Resource
Explorer tool

SFA client

PostgreSQL

Master Data

OpenDJ

Users & Rights

Local DB

Testbeds
Directory

Service

Booking
Service

Users & Rights
Service

1

2

5

Testbed Operator/
Administrator SFA Aggregate Manager

Triple
Store DB

REST APITestbed Manager1 3

4

2

Figure 4 – Resource Edit/Update

RAWFIE Resource editing:

Actions (from Platform Level): No editing of resources from Resource Explorer Tool. Only view

is possible by contacting Testbed Directory Service

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

29

Actions (from testbed Level):

1. Testbed Operator/administrator sends the changes of the resource to Testbed Manager

(via Testbed Manager UI)

2. Local DB is updated

3. Request is forwarded to the AM to update its internal triple store DB

4. Request is forwarded to the Testbed Directory Service

5. Testbed Directory Service will apply the changes to the RAWFIE Master Data repository

SFA Resource editing:

Resource editing/addition/deletion via SFA is disabled in RAWFIE.

3.6.4 Resource booking

Reservation of resources is one of the aspects addressed by the SFA Aggregate Manager (AM).

Therefore, the Booking Service will interact with AM in order to ensure that reservations

between RAWFIE and the AM triple store database are synchronized. Figure 5 below depicts the

extra interactions needed during a booking request.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

30

Front-End-Tier

Testbed Tier

Testbed

Middle Tier

SFA

Data Tier

User /
Experimenter

Booking tool

Web Portal

Resource
Explorer tool

SFA client

SFA Aggregate Manager

Triple
Store DB

Testbeds
Directory

Service

Booking
Service

Users & Rights
Service

1

2

3

1

2

PostgreSQL

Master Data

OpenDJ

Users & Rights

4

REST API

Figure 5 – Resource Booking

RAWFIE Resource booking:

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

31

1. User loads the Calendar view and initiates an update or create booking request

2. Booking Tool interacts with Booking Service to retrieve required information from the

Master Data Repository

3. Booking Service communicates/synchronizes with AM to retrieve possible AM initiated

booking that are not present in Master Data Repository as well as inform about the

updated/new booking

4. Booking Service updates/creates the Bookings in the Master Data Repository and returns

the data to the Booking Tool

All actions should be performed within a transaction.

SFA Resource booking:

1. User requests the bookings from the SFA Client

2. SFA Client reads the bookings from the AM (directly from internal Triple Store DB)

Note: Booking Service also periodically synchronizes with AM to ensure consistency of

reservations with SFA

3.7 Testbed Tier

The Testbed Tier encompasses the infrastructure (both in terms of software and hardware

elements) that needs to be deployed to the Testbeds facilities in order to support the execution

and monitoring of experiments as well as the data exchanged with the Middle Tier and the UxVs.

The UxV nodes are considered as part of the Testbed Tier. The Testbed Tier maintains a local

database for storing information needed for the testbed and its experiments and does not directly

interact with the RAWFIE data tier.

The different kinds of Testbeds (Maritime, Vehicular and Aerial) share a common testbed

interface that abstracts their particularities and exposes a unified access to and from the other

tiers.

3.7.1 Common Testbed Interface

The Testbeds may be very heterogeneous due to different constraints and characteristics of the

selected area/region. Nevertheless, each testbed shall adhere to a Common Testbed Interface that

includes:

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

32

¶ message bus clients, that is, publishers and consumers of the Message Bus (software

perspective),

¶ secured high bandwidth connection capabilities for the communication with the Middle

Tier (networking perspective).

The messages exchanged between Testbed Tier and the Middle Tier includes:

¶ Messages related to the control of an experiment, like start, stop, cancel, etc. (Resource

Controller reference implementation),

¶ Messages related to sending of status and health information for each testbed (Testbed

Manager/Monitoring Manager reference implementation),

¶ Messages related to experiment data/measurements collected during an experiment that

need to be analysed by the platform data analytics engine (UxV reference

implementation),

¶ Location information and other dynamic characteristics of the various devices that can be

used for coordination, monitoring and visualization purposes (UxV reference

implementation).

More details on the exact Messages/Commands that are supported between the Testbed Tier and

the Middle Tier are provided in WP5 deliverables. All these messages refer to the actual

application specific interactions imposed by the type of experiments that need to be supported by

RAWFIE. It does not address issues related to resource discovery and reservations that are based

on the SFA standard and RAWFIE internal resource editing and booking protocol (see section

3.6).

Note that the testbed components implemented in RAWFIE comprise just a reference

implementation that may be adopted by Testbed providers. Testbeds facilities belonging to the

core RAWFIE project partners will probably use these components as well as the predefined

structure. However, external testbeds, including the ones that will be integrated through the Open

Calls, will decide on their own whether to use already existing software components by the

project, or implement their own (the licence fees for reusing existing RAWFIE reference

implementation will be part of the business model).

3.7.2 Constraints for testbed integration

This section summarizes the general needs and constraints that a testbed facility must fulfil in

order to be able to connect and operate within the premises of the RAWFIE federation. These do

not only adhere to the envisaged testbed architecture but are also related to administrative and

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

33

logistics aspects. The integration of a new testbed site in RAWFIE implies that the candidate

testbed shall:

1. implement the Common Testbed Interface that mandates asynchronous message bus

communication in all types of interactions that relate to RAWFIE specific experiments’

handling and data gathering (as described in section 3.7.13.7.1 above)

2. implement the required SFA Aggregate Manager Interface prescribed for FIRE

compatible testbeds for what has to do with resource discovery (as described in section

3.6)

Besides that, each testbed should provide additional infrastructure/resources that include at least:

1. Dedicated computational resources for executing the UxVs control commands and

handling sensor data messages from multiple devices with a reasonable rate

(testbed/UxV specific),

2. A high quality internet connection, as the testbed needs a connection to the RAWFIE

Cloud platform,

3. Appropriate maintenance area (usually protected) for storing UxV devices that are not in

the field,

4. Monitoring infrastructure that provides timely information on the exact location of all

UxV devices involved in experiments. The monitoring should be independent of the

positioning info that UxVs may provide,

5. Power supplyshould operate 24/7. In case of power outage, the tesbed and UxVs must

have safety procedures to follow.,

6. Availability of personnel during testbed operational hours (needed for safety reasons and

for transporting devices from/to the testing field).

A general requirement analysis is given in D3.3

3.7.3 Constraints for UxV integration

This section lists the main architectural constraints regarding the UxV integration. A general

requirement analysis is given in D3.3.

The hereafter-described constraints shall be met by the UxV hardware or by the on-board

software suite (directly or by a proxy translating UxV specific protocols and network interfaces

to the RAWFIE UxV Protocol)

1. UxVs shall be equipped with network communication devices,

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

34

2. UxVs shall publish/subscribe to information to the RAWFIE message bus,

3. UxVs shall record and transmit sensor data,

4. UxVs shall be able to store sensor data internally (for later transmission),

5. UxVs shall periodically publish position, orientation, velocity,

6. The UxVs shall be capable of keeping their positions (request station-keeping within a

radius of 5m, except UxVs that have to move forward in order to turn where the radius

should be 20 m for watercrafts and 100 m for small aircrafts)

7. UxVs shall periodically publish on-board storage usage, fuel usage, CPU usage,

8. UxVs shall be capable of processing sensor data in order to summarize large sensor data-

sets,

9. UxVs shall receive and act upon RAWFIE command messages to control the UxV

remotely (e.g. from the Front-end Tier)

10. The UxVs shall implement safe mode, for which it will immediately stop operating,

stopping the mission, turning off the actuators. The sensors will continue operating.

11. The UxV dimensions should not exceed 1.0x1.0x1.0m in order to make it possible for a

single person to deploy the vehicle on a pool or on the shore. Additionally, the USV

weight should not exceed 18 kilograms in its basic configuration, without payload.

12. The operating voltages shall not exceed 48V as a safety measure to minimize damages to

humans in case of defaults originated by improper handling of the USVs.

3.8 Message Bus

The Message Bus is used for two main purposes: for asynchronous communication inside the

Middle Tier and for all data exchange between the Middle Tier and the Testbed Tier.

Apache Kafka [4] has been chosen for implementing the message bus, by taking into

consideration the following aspects / advantages:

¶ capability to automatically spread data and, consequently, workload across a cluster of

machines, thus allowing scalability in a cloud environment,

¶ capability to automatically replicate data over multiple servers (brokers), thus ensuring

fault tolerance,

¶ built-in persistence mechanisms, which allows the system to easily deal with issues like

the temporary overload of the network connection, or temporary disconnections

o a Kafka broker stores all messages received in a ring buffer for a configurable

amount of hours (until disk is full or the max log size is reached). So messages

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

35

could also be read hours later. Producers could also be implemented in a way, that

they buffer messages locally, until they can be sent to a Kafka broker.

¶ high throughput, in terms of messages per seconds.

¶ build in security mechanisms that can be enabled during message exchange

As serialization format of the messages on the bus, Apache Avro [2] was chosen (a preformat

binary format).

An important parameter to consider when analysing the different communication patterns in

RAWFIE is the latency (see also Chapter 3.2), defined as the amount of time a message takes to

reach the receiver/s, after it has been sent by the publisher. Different aspects of the system

architecture may affect the latency in the communication, apart from the chosen software

technology itself: these aspects include the communication network, too.

3.8.1 Benchmarking and dimensioning Message Bus in RAWFIE

Benchmarking the software on reference platforms will give indications for the dimensioning of

the RAWFIE system so that, in similar conditions, it can meet the time constraints for most of

the experimentation execution.

Even though benchmarking and the knowledge of performance indicators allows for such

dimensioning, it shall not prevent the insertion of specific mechanisms for checking that the

constraints are met and defining the fall-back scenarios in the experiments.

During the second development cycle, three different scenarios, corresponding to three different

deployment architectures and configurations of the Apache Kafka messages bus, were tested. In

all the deploy scenarios the performance of the end-to-end communication using Apache Kafka

is considered as one of the most important parameter to check.

The following main configuration and deployment principles were applied for reducing the

latency in the publish/subscribe communication mechanism with Apache Kafka:

¶ use of different partitions (a partition in Apache Kafka is the equivalent of a message

queue for other messaging systems, which can be spread across different servers for

scalability) for the different UxVs: this ensures that the messages of the various UxVs do

not intermix, and it provides much shorter message bus queues dedicated to a particular

UxV and much faster response times

¶ use of a local Message Bus (message broker) installation within each Testbed. This way,

the internal communication between e.g. the Resource Controller and the UxVs will be

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

36

performed in a local, controlled network environment, thus reducing the impact of the

network in the latency of the communication. The overall workload in the message bus

will be reduced (since each broker will just handle its own messages), and the local

message bus system can be adjusted to the needs of the Testbed itself. Messages from

each local broker can be anyway mirrored to a centralised Kafka broker deployed in the

Cloud, so that Middle Tier components which need to access specific messages (e.g. logs

or other data for experiments’ control) will directly access the central message broker

rather than each of the local ones.

The considered deploy scenarios are described in the following, while the actual tests results are

reported and discussed in deliverable D6.3.

3.8.1.1 Scenario A- Single centralised Apache Kafka Broker

Zookeper

Kafka Broker

Producer

Producer

Producer

Consumer

Consumer

Producer

Figure 6 – Scenario A design

Scenario A is based on the initial Apache Kafka configuration infrastructure deployed during the

first implementation cycle. A unique, centralised broker controls all the messages exchange

between UxVs and RAWFIE services. This unique broker is installed in a single node and

creates “a single node - a single broker cluster” as it is described in [32]. Like many publish-

subscribe messaging systems, Kafka maintains feeds of messages in topics. Producers write data

to topics and consumers read from topics. Since Kafka is a distributed system, topics are

partitioned and replicated across multiple nodes. Messages are simply byte arrays and can be

stored in object oriented format, like the JSON format that is used by RAWFIE. Each topic can

be further discriminated by partitions. It is possible to attach a key to each message in which the

producer guarantees that all messages with the same key will arrive to the same partition. A topic

partition is the unit of parallelism in Kafka. On both the producer and the broker side, writes to

different partitions can be done fully in parallel. So expensive operations such as compression

Existing RAWFIE KAFKA Configuration (single cluster)

KAFKA Cluster

Kafka Broker0 (UOA premises)

GoTo

p0 p1 pXΧ

topic

partition

Location

p0 p1 pXΧ

Attitude

p0 p1 pXΧ Χ

ExperimentStart

p0 p1 pXΧ

SensorInfo

p0 p1 pXΧ

resources

TESTBED_1 TESTBED_XTESTBED_2

Χ

UxVrelated
topics

Χ
RAWFIE global
topics

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

37

can utilize more hardware resources. On the consumer side, Kafka always gives a single

partition’s data to one consumer thread. Thus, the degree of parallelism in the consumer (within

a consumer group) is bounded by the number of partitions being consumed. Therefore, in

general, the more partitions there are in a Kafka cluster, the higher the throughput one can

achieve. This facilitates sending and receiving messages during an experiment execution because

all the devices can send their location by using the same message format to the same topic

“Location” but in different partition; Resource Controller will read from the same topic the

different messages coming from the devices. One of the main disadvantages is that commands

for UxVs on one side, and UxVs’ measurements on the other side, have to be sent to this single

centralised Kafka node located outside of the Testbed, with the possible introduction of round

trip delays. Since each UxV device sends to and receive from a different partition, the number of

partitions may grow uncontrollably. This may not be scalable because needed partition number

depends on the number of resources of all available testbeds and any reconfiguration (i.e.

because a new Testbed or new UxVs are added) will affect all testbed providers. In general

although it’s possible to increase the number of partitions over time, we have to be careful if

messages are produced with keys. When publishing a keyed message, Kafka deterministically

maps the message to a partition based on the hash of the key. This provides a guarantee that

messages with the same key are always routed to the same partition. This guarantee can be

important for certain applications since messages within a partition are always delivered in order

to the consumer. If the number of partitions changes, such a guarantee may no longer hold. To

avoid this situation, a common practice is to over-partition a bit. Basically, it is advised to

determine the number of partitions based on a future target throughput, say for one or two years

later. Repartitioning can break the semantics in the application when keys are used, so it is

advised to avoid it.

3.8.1.2 Scenario B ï Multiple Apache Kafka Brokers with the same topics on each different

Testbed

In B scenario we are moving from a single node-broker infrastructure to “Multiple Nodes-

Multiple brokers cluster”. At this installation, we setup multiple brokers of each node which are

installed and connected to two zookeepers. Two zookeepers are created that are connected in

order to distribute the load of the messages in a more generic cluster of devices.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

38

Zookeeper

Node 1

Broker 1

Broker 2

Node 2

Broker 1

Broker 2

Producer

Producer

Producer

Consumer

Consumer

Consumer

Figure 7 - Scenario B design

Εvery testbed is part of the Kafka cluster and topics on each testbed broker have the same names

of topics in all the other brokers. All brokers are installed in the cluster and the UxV devices on

each Testbed send the messages to topics with the same names. With this approach UxV

commands avoid the excessive round trip delay of contacting the central Broker. UxV commands

respect the boundary of the testbed they belong to and configuration/reconfiguration of partitions

per topic is much easier to control since it relates only to specific testbed resources. The

repartition problem is still present with this approach even if the messages are distributed in

more efficient way.

3.8.1.3 Scenario C - Multiple Apache Kafka Brokers with different topics per testbed

In C scenario, we move from a single node-broker infrastructure to “Multiple Nodes- Multiple

brokers clusters” but we go a step further. To overcome the case of repartitioning in case of new

testbeds, topics are created with a different name per testbed (i.e prefixing the <testbed_id>_ in

each case) only for the messages related with the control of devices. In this scenario, every

testbed broker handles topics different from the others and all the topics are mirrored in the main

cluster for redundancy purposes. The UxVs need to consider the testbed identifier in order to

know where to send or from where to receive in each case (this can be part of their initial

configuration when deployed in a testbed). Partitions of topics in other testbeds is not affected by

adding or removing devices or even a whole testbed. Each testbed is a micro-system that controls

and knows only the devices in it.

Suggested RAWFIE KAFKA Configuration (multi cluster)

Broker 0 (UOA premises)

topic

partition

ExperimentStart

p0 p1 pXΧ

resources

Χ

TESTBED_1
Kafka Broker 1

Goto Location SensorInfo

TESTBED_2
Kafka Broker 2

Goto Location SensorInfo

TESTBED_X
Kafka BrokerX

Goto Location SensorInfo

Χ

KAFKA Cluster

RAWFIE global
topics

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

39

Zookeeper

Node 1

Broker 1

Broker 2

Node 2

Broker 1

Broker 2

Producer

Producer

Producer

Consumer

Consumer

Consumer

Figure 8 – Scenario C design

4 Components

This chapter describes the changes on components. For components that are not mentioned, the

descriptions from D4.4 apply.

4.1 Front End Tier

4.1.1 Resource Explorer Tool

Component Resource Explorer Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description The experimenter can discover and select available testbeds as well as

resources/UxVs inside a testbed with this tool.

Provided

functionalities
¶ Visualize Data from the “Testbed, Resources” directory

¶ Provide ability to search and select available resources inside a

testbed

Relation to other

components
¶ Testbeds Directory Service (REST/RPC API)

o IN/OUT ª read testbed and UxV data

¶ Booking tool (HTTP redirect)

o OUT send selected resources

Changes ¶ Editing and updating of testbed and UxV removed. This is done via

the Testbed Manager GUI

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

40

4.2 Middle Tier

4.2.1 Booking Service

Component Booking Service

Responsible partner HAI

Parent Component None

Description The Booking Service manages bookings of resources by registering data

to appropriate database tables and possibly providing notification

mechanisms to the experiments

The Booking Service is responsible for processing and validating all

reservations requests at user or/and experiment level initiated by the

platform.

Provided

functionalities
¶ Validates all reservations requests (add, edit, delete) based on a set of

predefined constraints/checks

¶ Coordinates reservations of testbed resources among experimenters

¶ Provides Notification mechanisms (reminder for experiments) for the

status of their reservation

¶ Ensures fairness in resource bookings (part of validation process)

¶ Interacts with the persistence store (Relational DB Tables)

Relation to other

components
¶ Booking Tool (REST/RPC API)

o IN « new/edited/deleted bookings

o OUT Changed status of pending reservation

o OUT existing Booking info

¶ Master Data Repository (JDBC)

o IN/OUT ª Execution of SQL queries for retrieving or updating

reservation related entities in the DB

¶ Launching Service, Experiment Authoring Tool (REST/RPC API)

o OUT existing user level reservation info for an experiment

¶ SFA Aggregate Manager - AM (REST API)

o OUT booking request to be added to AM internal DB

o IN « list of AM bookings to be synchronized in Master Datat

Repository

Changes ¶ Interaction with SFA AM added

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

41

4.3 Testbed Tier

4.3.1 Testbed Manager

Component Testbed Manager

Responsible partner HAI

Parent Component None

Description Contains accumulated information about the UxVs resources and the

experiments of each one of the federation testbeds. It supports a local

storage path (Local Data Repository) for storing local resources and

configurations and provides mechanisms for the synchronization of

local and central data repositories. Testbed Manager will be developed

as a stand-alone desktop application with Graphical User Interface

enabling the visualization of resources, experiments and all relevant

events within testbed boundaries.

Provided

functionalities
¶ Provides a graphical interface for the creation, reading, update and

deletion of resources

¶ Propagates additions and changes of resources to the Master Data

Repository using Testbeds Directory Service API

¶ Contains the registration log for the experiments in the tested

¶ Periodically receives the status of ongoing experiments

¶ Stores configuration parameters for the UxVs in the relevant Testbed

¶ Keeps statistics about testbed usage

¶ Hosts Monitoring Manager component for presentation of resources

parameters during their utilization in experiments

Relation to other

components
¶ Experiment Controller

o IN « Experiment start/cancel information

¶ Resource Controller

o IN « Current experiment status

o OUT Cancelation of experiment in emergency case

¶ Local Data Repository

o IN « UxVs configuration parameters

o IN « Experiments log

¶ Testbeds Directory Service

o OUT Call REST API to synchronize resources between Local

and Master Data Repository

¶ SFA Aggregate Manager

o OUT Call REST API to enable creation, update and deletion of

resources in SFA Aggregate Manager repository

Changes ¶ Graphical User Interface support

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

42

¶ Synchronization of local and central databases during creation,

update and deletion of resources

4.3.2 Monitoring Manager

Component Monitoring Manager (subcomponent of Testbed Manager)

Responsible partner HAI

Parent Component Testbed Manager

Description Monitors the status of the testbed and the UxVs belonging to it, at

functional level, e.g. the ‘health of the devices’ and current activity.

Provided

functionalities
¶ Periodically checks the current status of the resources in the facility

participating in experiments like remaining energy, CPU load,

storage usage, etc.

¶ Checks the location and attitude characteristics of the resources

participating in experiments

¶ Periodically monitors testbed’s CPU load, RAM, storage and

network usage and transmits the current status of the Testbed to the

System Monitoring Service.

¶ Displays all the above information in the graphical interface of the

Testbed Manager

Relation to other

components
¶ System Monitoring Service (via Message Bus)

o OUT testbed status and performance values

¶ UxV Node (via Message Bus)

o IN « Remaining Energy, CPU load, storage usage of UxV

o IN « location and attitude of UxV

Changes ¶ Added coupling with Testbed Manager for presentation of

information in Graphical User Interface at testbed level

¶ Added interactions with UxV nodes via Message Bus

4.3.3 UxV – Proximity Component

Component UxV – Proximity Component

Responsible partner CSEM

Parent Component UxV (all UxV components), Message bus

Description The proximity component allows members of a swarm of autonomous

vehicles to discover the presence and possibly interact with each other

with very low latency without depending on the RAWFIE middleware

or any other ground equipment. In essence, the approach bears

similarities with the transponders on commercial airplanes even though

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

43

it offers additional services. The RAWFIE proximity component is

based on specific hardware, which is integrated into the UxV in the

form of a secondary radio communication interface. That secondary

interface is low-power to minimise its impact on the autonomy of the

vehicles. The software part of the component implements the protocols

and services as well as the interface with the other UxV components.

Provided

functionalities

Generic direct data exchange between the UxVs following the

producer/consumer and publish/subscribe models. Typical applications

realised in partnership with other components:

¶ Detection of the presence and identification of neighbouring UxV,

¶ Exchange of position, course and speed information between a UxV

and its neighbours to prevent collisions

¶ Detection of failed UxVs or UxVs disconnected from the main

network

¶ Localisation of lost UxVs stopped or grounded due to fuel or battery

exhaustion

¶ Data collection on static low power wireless sensors.

Relation to other

components
¶ Serial interface of the hardware with the UxV

¶ Host Command Interface (HCI) protocol on top of the serial

interface.

¶ Implementation of a Proximity Delegate component on the UxV to

interface the UxV components (UxV Node, UxV Network

communications, …) with the proximity component radio.

¶ Depending on the application, the Proximity Component delegate

may communicate directly with the message bus (e.g. to publish a list

of its neighbours) or internally with the components inside the UxV

(e.g. collision avoidance).

Changes ¶ New

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

44

Part V: Annex

Annex A Abbreviations

The following table gives the abbreviations used across the RAWFIE projects in the documents

and deliverables.

Abbreviation Meaning

3D three-dimensional space

ACL Access Control List

AGL Above Ground Level

AHRS Attitude and Heading Reference System

AJAX Asynchronous JavaScript and XML

AM Aggregate Manager (of SFA)

AP Access Point

API Application Programming Interface

API Application programming interface

AT Aerial Testbed

AUV Autonomous underwater vehicle

B-VLOS Beyond Visual Line Of Sight

CA Certification Authority

CAA Civil Aviation Authority

CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological

CEP Circular Error Probability

CPS Cyber-Physical systems

CPU Central Processing Unit

CSR Certificate Signing Request

DETEC Department of the Environment, Transport, Energy and Communication

DGCA Directorate General of Civil Aviation

DoA Description of Actions

EASA European Aviation Safety Agency

EC Experiment Controller

ECC Error Correction Code

ECV EDL Compiler & Validator

EDL Experiment Description Language

EDL Experiment Description Language

EER Experiment and EDL Repository

EU European Union

E-VLOS Extended Visual Line Of Sight

EVS Experiment Validation Service

FIRE Future Internet Research & Experimentation

http://en.wikipedia.org/wiki/Attitude_and_heading_reference_system

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

45

FOCA Federal Office of Civil Aviation

FPS Frames Per Second

FPV First Person View

GAA German Aviation Act

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

GUI Graphical user interface

HD High Definition

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

HW Hardware

IAA Irish Aviation Authority

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDE integrated development environment

IFR Instrument Flight Rules

IP Internet Protocol

ISO International Standards Organization

JDBC Java Database Connectivity

JSON JavaScript Object Notation

KPI Key Performance Indicator

KPI Key Performance Indicator

LBL Long Baseline

LDAP Lightweight Directory Access Protocol

LS Launching Service

MEMS MicroElectroMechanical System

MM Monitoring Manager

MSO Multi Swarm Optimization

MT Maritime Testbed

MOM Message Oriented Middleware

MVC Model View Controller

NAT Network Address Translation

NC Network Controller

NF Non Functional

ODBC Open Database Connectivity

OEDL OMF EDL

OMF cOntrol and Management Framework

OMF Orbit Management Framework

OML ORBIT Measurement Library

OS Operating System

OTA Over The Air

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

46

P2P Point to Point

PSO Particle Swarm Optimization

PTZ Pan Tilt Zoom

RC Resource Controller

RC Resource Controller

RE Requirement Engineering

REST Representational state transfer

RIA Research and Innovation Action

ROS Robot Operating System

ROV Remotely Operated Vehicle

RPA Remotely Piloted Aircraft

RPAS Remotely Piloted Aircraft System

RPS Remotely Piloted Station

RSpec SFA Resource Specification

SaaS Software as a Service

SAML Security Assertion Markup Language

SFA Slice-based Federation Architecture

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Simple Query Language

SSO Single-Sign-On

SVN Apache Subversion

TM Testbed Manager

TMS Testbed Manager Suite

TP Testbed Proxy

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UI User Interface

UML Unified Modelling Language

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UxV Unmanned aerial/ground/surface/underwater Vehicle

VE Visualization Engine

VT Vehicular Testbed

VT Visualization Tool

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

WSDL Web Services Description Language

XMPP Extensible Messaging and Presence Protocol
Table 1: Common abbreviations

The following table gives the notations used in the RAWFIE documents and deliverables.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

47

Notation Description

DX.Y Deliverable X.Y from the DoW

MSX Milestone X from the DoW

WPX Work package X from the DoW

OCX Open Call X

AX.Y Activity number Y in Phase X

DLX.Y Deadline number Y in Phase X

MX Project month number X

Table 2: Notation

Annex B Glossary

The RAWFIE glossary is made of generic terms, contributed by all partners.

A

Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager

SFA term. The Aggregate Manager API is the interface by which experimenters discover,

reserve and control resources at resource providers.

Avro

Apache Avro: a remote procedure call and data serialization framework

B

Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering

data to appropriate database tables.

Booking Tool

RAWFIE component. The Booking tool will provide the appropriate Web UI interface for the

experimenter to discover available resources and reserve them for a specified period.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

48

C

Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed provider

should ensure, for the communication with Middle Tier software components of RAWFIE,

therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A

component may encapsulate one or more modules (see definition) and should provide a well

defined API for interaction

D

Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing

jobs by sending requests to a processing engine which will perform the computations

specified when the analytical task was defined through the Data Analysis Tool to be

transmitted to the processing engine for execution.

Data Analysis Tool

RAWFIE component. The Data Analysis Tool enables the user to browse available data

sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E

EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

RAWFIE component. This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It will provide features

to handle resource requirements/configuration, location/topology information, task description

etc.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

49

Experiment Controll er

RAWFIE component. The Experiment Controller is a service placed in the Middle tier and is

responsible to monitor the smooth execution of each experiment. The main task of the

experiment controller is the monitoring of the experiment execution while acting as ‘broker’

between the experimenter and the resources.

Experiment Monitoring Tool

RAWFIE component. Shows the status of experiments and of the resources used by

experiments.

Experiment Validation Service

RAWFIE component. The Experiment Validation Service will be responsible to validate

every experiment as far as execution issues concern.

M

Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the RAWFIE

platforms. Is an SQL-database

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and

receiving messages between distributed systems. It is used in RAWFIE across all tiers to

enable asynchronous, event-based messaging between heterogeneous components.

Implements the Publish/Subscribe paradigm.

Module

A set of code packages within one software product that provides a special functionality

Monitoring Manager

RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at

functional level, e.g. the ‘health of the devices’ and current activity.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

50

N

Network Controller

Manages the network connections and the switching between different technologies in the

testbed in order to offer seamless connectivity in the operations of the system.

L

Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for starting

or cancellation of experiments.

R

Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and

automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool

RAWFIE component. The experimenter can discover and select available testbeds as well as

resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

SFA term. This is the means that the SFA uses for describing resources, resource requests,

and reservations (declaring which resources a user wants on each Aggregate).

S

Schema Registry

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

51

A schema registry is a central service where data schemas are uploaded to. As an added

benefit each schema has versions with it can convert allowable formats to other ones (e.g.:

float to double) It maintains schemas for the data transferred and keeps revisions to be able to

upgrade the definitions as with the simple field conversion. Used in RAWFIE for messages on

the message bus.

Service

A component that is running in the system, providing specific functionalities and accessible

via a well known interface.

Slice Federation Architecture (SFA)

SFA is the de facto standard for testbed federation and is a secure, distributed and scalable

narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided software

solution as a whole.

System Monitoring Service

RAWFIE component. Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels. Predefined notification are triggered

whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool

RAWFIE component. Shows the status and the readiness of the various RAWFIE services

and testbed

T

Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific

theories, computational tools, and new technologies.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

52

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where

UxVs can move around to execute some experiments. In addition, the UxVs are stored in or

near the testbed.

Testbeds Directory Service

RAWFIE component. Represents a registry service of the middleware tier where all the

integrated testbeds and resources accessible from the federated facilities are listed, belonging

to the RAWFIE federation.

Testbed Manager

RAWFIE component. Contains accumulated information about the UxVs resources and the

experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search for a

resource

U

Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services (LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:

USV Unmanned Surface vehicle.

UAV Unmanned Aerial vehicle.

UGV Unmanned Ground vehicle.

UUV Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-time

remotely navigate a squad of UxVs.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

53

UxV node

RAWFIE component. A single UxV node. The UxV is a complete mobile system that

interacts with the other Testbed entities. It can be remotely controlled or able to act and move

autonomously.

V

Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation tool,

to communicate with the other components, to handle geospatial data, to retrieve data for

experiments from the database, to load and store user settings and to forward them to the

visualisation tool.

Visualisation Tool

RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of

experiments that are already finished

W

Web Portal

RAWFIE component. The central user interface that provides access to most of the RAWFIE

tools/services and available documentation.

Wiki Tool

RAWFIE component. Provides documentation and tutorials to the users of the platform.

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

54

References

[1] Reference Model for Service Oriented Architecture 1.0,Committee Specification 1,

2 August 2006 - http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

[2] Apache Avro - http://avro.apache.org/

[3] Avro RPC Quick Start - https://github.com/phunt/avro-rpc-quickstart

[4] Apache Kafka homepage - http://kafka.apache.org/

[5] A Relational Database Overview, oracle.com -

https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html

[6] PostgreSQL homepage: http://www.postgresql.org/

[7] Directory Services (LDAP), oracle.com -

http://docs.oracle.com/cd/A87860_01/doc/ois.817/a83729/adois09.htm

[8] OpenDJ hompage - http://opendj.forgerock.org/

[9] PostgreSQL-Wiki: Replication, Clustering, and Connection Pooling,-

https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling

[10] OpenDJ Administration Guide: Chapter 9: Managing Data Replication -

https://backstage.forgerock.com/#!/docs/opendj/2.6/admin-guide/chap-replication

[11] GENI Aggregate Manager API Version 3 -

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

[12] GENI Aggregate Manager API - http://groups.geni.net/geni/wiki/GAPI_AM_API

[13] Hadoop WebHDFS REST API - http://hadoop.apache.org/docs/r2.7.2/hadoop-project-

dist/hadoop-hdfs/WebHDFS.html

[14] Hadoop - http://hadoop.apache.org/

[15] Fed4FIRE: D5.1 - http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D5-

1_Fed4FIRE_Detailed_specifications_for_first_cycle_ready.pdf

[16] Kafka Security - http://docs.confluent.io/2.0.0/kafka/security.html

[17] Graphite - http://graphite.wikidot.com/

[18] Whisper - http://graphite.readthedocs.io/en/latest/whisper.html

[19] Messaging Bridge, from Enterprise Integration Patterns, Gregor Hohpe and Bobby

Woolf, Addison-Wesley 2013

http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingBridge.html

[20] RSpec Version 3 Specification - http://groups.geni.net/geni/wiki/RSpecSchema3

[21] Slice-based Facility Architecture. e]. http://opensfa. info/doc/opensfa.html

[22] The Open-Multinet Upper Ontology - Towards the Semantic-based Management of

Federated Infrastructures, A. Willner, C. Papagianni, M. Giatili, P. Grosso, M. Morsey,

Al-Hazmi Y., I. Baldin, "", The 10th International Conference on Testbeds and Research

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://avro.apache.org/
https://github.com/phunt/avro-rpc-quickstart
http://kafka.apache.org/
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
http://www.postgresql.org/
http://docs.oracle.com/cd/A87860_01/doc/ois.817/a83729/adois09.htm
http://opendj.forgerock.org/
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://backstage.forgerock.com/
http://groups.geni.net/geni/wiki/GAPI_AM_API
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/
http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D5-1_Fed4FIRE_Detailed_specifications_for_first_cycle_ready.pdf
http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D5-1_Fed4FIRE_Detailed_specifications_for_first_cycle_ready.pdf
http://docs.confluent.io/2.0.0/kafka/security.html
http://graphite.wikidot.com/
http://graphite.readthedocs.io/en/latest/whisper.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingBridge.html
http://groups.geni.net/geni/wiki/RSpecSchema3

 D4.7 - High Level Design and Specification of RAWFIE Architecture (3
rd

 version)

55

Infrastructures for the Development of Networks & Communities (TRIDENTCOM

2015), Vancouver, Canada, June 2015.

[23] DBcloud: Semantic Dataset for the Cloud, M. Morsey, A. Willner, R. Loughnane, M.

Giatili, C. Papagianni, I. Baldin, P. Grosso, Y. Al-Hazmi, “”, accepted to appear at

CRNET, Infocom 2016.

[24] Design, architecture and implementation of a resource discovery, reservation and

provisioning framework for testbeds, D. Stavropoulos, A. Dadoukis, T. Rakotoarivelo, M.

Ott, T. Korakis, L. Tassiulas,, Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks (WiOpt), 2015 13th International Symposium on. IEEE, 2015.

[25] Holistic schedulability analysis for distributed hard real-time systems, Tindell and J.

Clark, Microprocessing and Microprogramming, vol. 40, 1994.

[26] A Stateful Processor Interconnect, Sutton F. et al., Bolt:,SenSys’15, 2015.

[27] Adaptive Real-Time Communication for Wireless Cyber-Physical Systems, Marco

Zimmerling, Luca Mottola, Pratyush Kumar, FedericoFerrari, Lothar Thiele, ACM

Transactions on Cyber-Physical Systems,1(2), 2017.

[28] End-to-end real-time guarantees in wirelesscyber physical systems, Romain Jacob ;

Marco Zimmerling ; Pengcheng Huang ; JanBeutel ; Lothar Thiele., IEEE Real-Time

Systems Symposium (RTSS), 2016.DOI: 10.1109/RTSS.2016.025

[29] Real-Time communication and coordination in embedded sensor networks, John A.

Stankovic , Tarek Abdelzaher , Chenyang Lu , Lui Sha , Jennifer Hou, Proc. of the IEEE

91(7), pp. 1002--1022 (2003)

[30] Apache HBase - https://hbase.apache.org/

[31] Kafka Connect for Hbase - https://github.com/mravi/kafka-connect-hbase

[32] Learning Apache Kafka, second edition, Nishant Garg - 2015

https://hbase.apache.org/
https://github.com/mravi/kafka-connect-hbase

