
This project has received funding from ñHORIZON 2020ò the European Unionôs Framework Programme

 for research, technological development and demonstration under grant agreement no 645220

Project Coordinator: National and Kapodistrian University of Athens

H2020 - 645220

Road-, Air- and Water-based Future Internet

Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number
and Title

D4.1 - High Level Design and Specification of RAWFIE Architecture

Confidentiality PU Deliverable type
1
 R

Deliverable File D4.1 Date 31.05.2015

Approval Status
2
 2nd Reviewer Version 1.0

Contact Person Marcel Heckel Organization Fraunhofer

Phone +49 351 / 4640-645 E-Mail marcel.heckel@ivi.fraunhofer.de

1
 Deliverable type: P(Prototype), R (Report), O (Other)

2
 Approval Status: WP leader, 1

st
 Reviewer, 2

nd
 Reviewer, Advisory Board

 D4.1 - High Level Design and Specification of RAWFIE Architecture

2

AUTHORS TABLE

Name Company E-Mail

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Blerina Lika UOA b.lika@di.uoa.gr

Kostas Kolomvatsos UOA kostasks@di.uoa.gr

Kakia Panagidi UOA kakiap@di.uoa.gr

Stathes Hadjiefthymiades UOA shadj@di.uoa.gr

Giovanni Tusa IES g.tusa@i4es.it

Kiriakos Georgouleas HAI GEORGOULEAS.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

Jason Ramapuram HES-SO jason@ramapuram.net

Lionel Blond® HES-SO lionel.blonde@hesge.ch

Cveta Dimitrova Epsilon cveta.dimitrova@epsilon-bulgaria.com

Ricardo Martins MST rasm@oceanscan-mst.com

Alexandre Sousa MST alex@oceanscan-mst.com

Elias Kosmatopoulos CERTH kosmatop@iti.gr

Philippe Dallemagne CSEM pda@csem.ch

REVIEWERS TABLE

Name Company E-Mail

Sarantis Paskalis UOA paskalis@di.uoa.gr

Philippe Dallemagne CSEM pda@csem.ch

Kiriakos Georgouleas HAI GEORGOULEAS.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

 D4.1 - High Level Design and Specification of RAWFIE Architecture

3

DISTRIBUTION

Name / Role Company Level of

confidentiality
3

Type of deliverable

ALL PU R

CHANGE HISTORY

Version Date Reason for Change Pages/Sections

Affected

0.1 2015-03-10 Initial version all

0.2 2015-04-17 Restructured and components tables added all

0.3 2015-04-20 ñRelevant FIRE projectsò added Section 2.1

0.4 2015-04-21 Component and Use cased responsibilities edited Sections 4 and 5

0.5 2015-04-23 Components refined Section 4

0.6 2015-04-23 Addition to state of the art Section 2

0.7 2015-04-04 Addition to state of the art Section 2

0.8 2015-04-05 Addition to state of the art Section 2

0.9 2015-04-06 Addition to state of the art, architectural overview

and components

Sections 2, 3, 4

0.10 2015-04-07 Addition to state of the art Section 2

0.12 2015-04-08 Review of contributions all

0.13 2015-04-11 Restructuring of document. Moved section 2 at the

end.

all

0.14 2015-04-18..25 Several contributions and restructuring all

0.15 2015-04-26 Finalize version for 1
st
 review all

0.16 2015-04-28 Review by HAI all

0.17 2015-04-28 Review by CSEM all

0.18 2015-04-29..31 Addressing Review comments all

1.0 2015-04-31 Final Version

3
 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium

members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

4

Abstract:

This deliverable describes the first version of the RAWFIE high lever architecture. An overview of

all components and there interaction is given. Also a state of the art summary of technologies

that may be used to implement the architecture is given.

Keywords:
architecture, components, interactions, technology overview

 D4.1 - High Level Design and Specification of RAWFIE Architecture

5

Part II: Table of Contents-

Part II: Table of Contents- .. 5

List of Figures ... 7

List of Tables ... 9

Part III: Executive Summary .. 11

Part IV: Main Section ... 12

1 Introduction ... 12

1.1 Scope of D4.1 ... 12

1.2 Relation to other deliverables ... 12

1.3 Abbreviations ... 12

1.4 Disambiguation .. 13

2 Architectural Overview ... 13

3 Components overview ... 15

3.1 Front end tier .. 16

3.2 Middle Tier ... 20

3.3 Data tier .. 29

3.4 Testbed tier ... 31

3.5 Requirement mapping .. 39

4 Potential use cases and sequence diagrams ... 42

4.1 User login, authentication and authorisation .. 42

4.1.1 Password-based user login .. 42

4.1.2 X.509 Certificate-based user login ... 44

4.1.3 Check user authorisation ... 44

4.1.4 Trusted and secure communication between the components 45

4.2 EDL editing .. 47

4.3 Resource booking and reservation ... 49

4.3.1 Search for a resource ... 49

4.3.2 Book a resource... 50

4.4 Experiment launching and execution ... 51

4.4.1 Short-term launching .. 51

 D4.1 - High Level Design and Specification of RAWFIE Architecture

6

4.4.2 Long term launching ... 53

4.5 Measurements recording .. 54

4.6 Data analysis .. 55

4.7 View visualization of running experiment ... 56

4.8 System monitoring ... 58

4.8.1 General monitoring activities .. 58

4.8.2 Error notifications ... 60

4.9 Testbed monitoring .. 61

4.10 UxV remote control .. 62

5 State of the art .. 65

5.1 Relevant FIRE projects .. 65

5.1.1 Fed4FIRE .. 65

5.1.2 SUNRISE .. 70

5.1.3 RELYonIT .. 73

5.1.4 IoT Lab.. 76

5.1.5 WISEBED ... 78

5.2 Relevant technologies .. 81

5.2.1 Experiment Description Language ... 81

5.2.2 Authentication mechanism.. 86

5.2.3 Data analysis ... 89

5.2.4 Navigation mechanism for UxVs.. 92

5.2.5 Device communication for UxVs ... 94

5.2.6 Cloud specifics .. 99

5.2.7 Data Pipeline Architecture: ... 102

5.2.8 Data storage .. 103

5.2.9 Message Bus technologies and related communication protocols 105

5.2.10 Resource discovery ... 111

5.3 UxV technologies ... 114

5.3.1 ROS platform control architecture .. 114

5.3.2 USV platform .. 117

References ... 122

 D4.1 - High Level Design and Specification of RAWFIE Architecture

7

List of Figures

Figure 1 - Architecture diagram .. 14

Figure 2 - Sequence Diagram ï Password based user login ... 43

Figure 3 - Sequence Diagram - Certificate-based user login .. 44

Figure 4 - Sequence Diagram - Check user authorisation .. 45

Figure 5 - Sequence Diagram - communication between components ... 47

Figure 6 - Sequence Diagram - EDL editing .. 48

Figure 7 - Sequence Diagram - Search for resource, select one and start booking 50

Figure 8 - Sequence Diagram - Book a resource .. 51

Figure 9 - Sequence Diagram - Real time launching .. 53

Figure 10 - Sequence Diagram - Long term launching... 54

Figure 11 - Sequence Diagram ï Measurements recording .. 55

Figure 12 - Sequence Diagram ï Data analysis engine .. 56

Figure 13 - Sequence Diagram ï Running experiment visualisation ... 57

Figure 14 - Sequence Diagram ï System monitoring service ï General activities 59

Figure 15 - Sequence Diagram ï System monitoring service ï Error notification 61

Figure 16 - Sequence Diagram ï Testbed monitoring .. 62

Figure 17 - Sequence Diagram ï UxV remote control ... 63

Figure 18 - FIRE pentagon ... 65

Figure 19 - OMF framework... 68

Figure 20: Logic view of the SUNRISE architecture ... 72

Figure 21: SUNRISE Gate in its essense .. 73

Figure 22: - Design diagram of RELYonIT tool-chain .. 75

Figure 23: Experiment described in OEDL language ... 81

Figure 24: ï Federation of resource providers .. 83

Figure 25: Plugins enable access to testbeds .. 84

Figure 26 - Topologies of Spark Streaming + MLlib and Storm + Samoa 91

Figure 27 - Pros and Cons of Cloud computing ... 100

Figure 28: - Difference between IaaS, PaaS and SaaS. [24] ... 101

Figure 29 - Data pipeline architecture .. 102

Figure 30 - Communication between devices and schema registry .. 103

Figure 31 - Performance comparison of different databases .. 104

Figure 32 - Publish/Subscribe communication pattern through the use of a Message Broker ... 105

Figure 33 - Apache Kafka multi-broker architecture .. 107

Figure 34 - Comparison of throughput for different message brokers [82] 107

Figure 35 - Confluent architecture .. 108

Figure 36 - MQTT-SN clients state transition diagram [61] .. 111

Figure 37 - Advertisement of available resources and request for resources reservation in GENI

... 112

Figure 38 - Service Location protocol components .. 114

 D4.1 - High Level Design and Specification of RAWFIE Architecture

8

Figure 39 - Dune Tasks for communication between modules .. 118

Figure 40: Neptus mission planner interface .. 120

Figure 41 ï MRA visualizations ... 120

 D4.1 - High Level Design and Specification of RAWFIE Architecture

9

List of Tables

Table 1: Common abbreviations ... 13

Table 2: Template for componentsô description ... 16

Table 3: Web Portal .. 16

Table 4: Resource Explorer Too ... 17

Table 5: Booking Tool .. 17

Table 6: Experiment Authoring Too ... 18

Table 7: Experiment Monitoring Tool .. 18

Table 8: System Monitoring Tool ... 18

Table 9: UxV Navigation Tool ... 19

Table 10: Visualization Tool .. 20

Table 11: Data Analysis Tool ... 20

Table 12: EDL Compiler & Validator .. 21

Table 13: Experiment Validation Service ... 23

Table 14: Users & Rights Service ... 23

Table 15: Booking Service.. 23

Table 16: Launching Service .. 24

Table 17: Experiment Controller .. 25

Table 18: Data Analysis Engine ... 26

Table 19: System Monitoring Service .. 26

Table 20: Testbeds Directory Service ... 27

Table 21: Message Bus ... 29

Table 22: Testbeds & Resources Repository .. 29

Table 23: Experiments & EDL Repository ... 30

Table 24: Bookings Repository .. 30

Table 25: Measurements, Results & Status Repository .. 31

Table 26: Users & Rights Repository ... 31

Table 27: Testbed Proxy ... 32

Table 28: Testbed Manager .. 32

Table 29: Monitoring Manager ... 33

Table 30: Network Controller ... 33

Table 31: Resource Controller .. 34

Table 32: Navigation Service.. 35

Table 33: UxV node .. 36

Table 34: UxV - Network communication ... 36

Table 35: UxV ï Sensors & Localization ... 37

Table 36: UxV ï On board storage ... 37

Table 37: UxV ï On board processing ... 38

Table 38: UxV ï Device management .. 38

Table 39: Allocation of Platform Requirements to Architecture Components............................. 40

 D4.1 - High Level Design and Specification of RAWFIE Architecture

10

Table 40: Comparison of features providedfeature by Spark Streaming/MLlib and

Storm/Samoafeature .. 91

Table 41: Supported Algorithms in MLlib and Samoa:.. 92

Table 42: Comparison between Relation and NoSQL databases [84] .. 105

 D4.1 - High Level Design and Specification of RAWFIE Architecture

11

Part III: Executive Summary

This deliverable describes the planed high level architecture of RAWFIE. First a general

overview of the architecture is given. Following each planned component is described and

relation to other components are noted. After this, several use cases of the RAWFIE system are

investigated and sequence diagrams visualize how these use cases will be handled using the

planned architecture. At the end of the document, an excessive state of the art summary is given

that list technologies that may be used to implement the planned architecture.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

12

Part IV: Main Section

1 Introduction

1.1 Scope of D4.1

The DoW contains already a comprehensive overview of the planned high-level architecture.

This deliverable will go more into the technical details:

¶ Clearly outline all the planned components

¶ Define the capabilities of the component interfaces

¶ Show possible interactions and dependencies between different components

¶ Describe the runtime environment of the components (cloud, local server, etc.)

In addition, this deliverable includes an analysis of existing technological solutions in areas

related to RAWFIE.

1.2 Relation to other deliverables

A detailed requirement analysis was given in D3.1. Based on these requirements and the planned

functionalities from the DoW, this architecture document was created. The stakeholders used in

the diagrams are described in detail within D3.1.

D4.2 is expected to provide detailed components descriptions. Therefore, the intention of this

deliverable is just to describe the components and their interfaces on a high level.

1.3 Abbreviations

Abbreviation Meaning

3D three-dimensional space

API Application programming interface

AT Aerial Testbed

AUV Autonomous Underwater Vehicle

CA Certification Authority

DoW Description of Work

EDL Experiment Description Language

EER Experiments and EDL Repository

EVS Experiment Validation Service

GUI graphical user interface

IDE integrated development environment

KPI Key Performance Indicator

MM Monitoring Manager

MT Maritime Testbed

NAT Network Address Translation

OMF Orbit Management Framework

OML ORBIT Measurement Library

 D4.1 - High Level Design and Specification of RAWFIE Architecture

13

RC Resource Controller

REST Representational state transfer

SAML Security Assertion Markup Language

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSO Single-Sign-On

TM Testbed Manager

UAV Unmanned Arial Vehicle

UGV Unmanned Ground Vehicle

USV Unmanned Surface Vehicle

UxV Unmanned aerial/ground/surface Vehicle

VT Vehicular Testbed

WSDL Web Services Description Language

XMPP Extensible Messaging and Presence Protocol
Table 1: Common abbreviations

1.4 Disambiguation

¶ Module:

o Modules deal with code packaging and the dependencies among code.

o A set of code packages within one software product that provides a special

functionality

¶ Component:

o A reusable entity that provides a set of functionalities (or data) semantically

related. A component may encapsulate one or more modules or packages and

should provide a well defined API for interaction

¶ Subsystem

o A collection of components providing a subset of the system functionalities.

¶ System

o A collection of subsystems and/or individual components representing the system

as a whole.

¶ Tool

o A GUI implementation to do a special thing, e.g. the ñResource Explorer toolò to

search for a resource.

o Can be a module or component

2 Architectural Overview

This chapter gives an overview over the architecture and its components.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

14

User / Experimenter

USV / AUV UGV UAV

Booking tool

EDL Compiler
& Validator

Experiment
Validation

Service

Measurement
s, Results &

Status

UxV Navigation
tool

On-Board
 storage

SensorS &
Localization

Users & Rights
Service

Testbed &
Resources

Experiments /
EDL repository

Bookings Users &,
Rights

Booking
Service

M
e

s
s
ag

e
 B

u
s

Testbed proxy

Web Portal

Resource
Explorer tool

Monitoring

tool
Visualization

tool
Data analysis

tool

Experiment
Controller

Launching
Service

Visualization
engine

Data analysis
engine

System
Monitoring

Service

On-board
processing

Network
 Communication

visual/graphical
editor for the EDL

textual editor
for EDL

Manual
Launching

Monitoring
manager

Testbed
manager

Resource
Controler

Network
Controler

Device
management

Testbed proxy

Monitoring
manager

Testbed
manager

Resource
Controler

Network
Controler

Testbed proxy

Monitoring
manager

Testbed
manager

Resource
Controler

Network
Controler

Testbeds
Directory

Service

Figure 1 - Architecture diagram

 D4.1 - High Level Design and Specification of RAWFIE Architecture

15

The RAWFIE architecture consist of four tiers (see Figure 1):

¶ Front-end tier: Providing a web based GUI that enables the user to interact with the

RAWFIE system.

¶ Middle tier: A collection of services and components that provide different management

and processing functionalities. Middle tier entities should support deployment in cloud

environment

¶ Data tier: A collection of repositories that store the different data types generated and

collected by RAWFIE

¶ Testbed tier: The software and hardware components that are needed to run the testbeds

and UxVs

Also RAWFIE will follow the Service Oriented Architecture [79] paradigm: All components

should provide clearly defined interfaces, so that they can be easily accessed by other component

or they may be easily replaced by other/better component with the same interface. The services

can be described in languages such as Web Services Description Language (WSDL) [80].

Interacting with them is made possible by the use of remote service control protocols such as

Simple Object Access Protocol (SOAP) [81] or the Representational State Transfer (and REST)

resource invocation style, which are based on the popular HyperText Transfer Protocol (HTTP)

These application protocols are relying on any communication system that supports HTTP, such

as the Internet protocol stack (aka. IP or TCP/IP).

Additionally, a message-based middleware (via a Message Bus) will be used where suitable.

This can provide a coherent communication model with distribution, replication, reliability,

availability, redundancy, backup, consistency, and services across distributed heterogeneous

systems. This Message Bus communication system will interconnect all components and all tiers.

It can be used for asynchronous notifications and asynchronous method calls / response handling.

As such, it may be used for transmitting measurements that will be routed from producers (e.g.

UxVs) to the consumers pertaining to the Middle tier / Data tier (e.g. experiment monitoring,

visualisation or data repositories).

3 Components overview

This chapter describes at a high level the components and the interactions between the

components. Deliverable D4.2 will give a more detailed description of the components and

interfaces. Chapter 5 provides representative use cases and corresponding sequence diagrams

depicting interactions between the various components.

Component table

In the next sections, components will be described by using tables, according to the following

template.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

16

Component Name of the component or subsystem

Responsible partner The main responsible partner. Other may also be involved (may be

added in parenthesis), but this partner has to coordinate the activities for

this component.

Parent Component None

Description A short description of the component

Provided

functionalities

List of functionalities and interfaces provides by this component

Relation to other

components

How this component will interact with other components

Related user case

sections

Use cases in which the component is involved. See chapter 4

Table 2: Template for componentsô description

3.1 Front end tier

Component Web Portal

Responsible partner Fraunhofer

Parent Component None

Description The central user interface that provides access to most of the RAWFIE

tools/services and available documentation.

Provided

functionalities

- Login and access control

- Single sign on for each web tool

- Linkage of all web tools

Relation to other

components

- Provides a single point of access to the various RAWFIE Tools

through a web GUI.

Related user case

sections

- 4.1 User login, authentication and authorisation

Table 3: Web Portal

Component Resource Explorer Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description The experimenter can discover and select available testbeds as well as

resources inside a testbed with this tool

Provided

functionalities

- Visualize Data from the ñTestbed, Resourcesò directory

- Provide ability to search and select available resources inside a

testbed

Relation to other

components
- IN « Testbeds Directory Service

- OUT ­ Booking tool (send selected resources)

Related user case

sections

- 4.3.1 Search for a resource

 D4.1 - High Level Design and Specification of RAWFIE Architecture

17

Table 4: Resource Explorer Too

Component Booking Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description The experimenter can discover and select available testbeds as well as

resources inside a testbed with this tool

Provided

functionalities

- Visualize the available dates and timeslots for each testbed

resources (calendar view)

- Select the preferred date, timeslot and/or space fragment in a

testbed

- Reserve the UxV resources for a specified time interval

Relation to other

components
- IN/OUT ª Booking Service (existing bookings/new bookings)

Related user case

sections

- 4.3.2 Book a resource

Table 5: Booking Tool

Component Experiment Authoring Tool

Responsible partner UOA

Parent Component Web Portal

Description This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It

will provide features to handle resource requirements/configuration,

location/topology information, task description e.t.c.

Provided

functionalities

The supported functionalities are:

- Experiment Definition Language (EDL)

- Textual EDL editor (with syntax highlighting)

- Visual EDL editor (describes script with graphical elements)

- Textual and visual editors synchronization

- Saving EDL scripts

- Versioning of EDL scripts

- Experiment validation

- Manual Experiment launching

Relation to other

components

The authoring tool will be connected with the respective components of

the middle and data tiers. The use of EDL textual and visual editors will

trigger EDL compiler and experiment validation backend services to

perform syntactic and semantic analysis of the EDL scripts. The

authoring tool will be connected with the launching service for

scheduling the experiment executions. Moreover, this tool will interact

with the EDL repository of the data tier in order to retrieve and/or store

EDL scripts.

- IN « EDL Compiler and Validation

 D4.1 - High Level Design and Specification of RAWFIE Architecture

18

- IN «Experiment Validation Service

- IN « Launching Service

- IN « Experiment and EDL Repository

- OUT ­ Textual and visual editor tools

Related user case

sections

- 4.2 EDL editing

Table 6: Experiment Authoring Too

Component Experiment Monitoring T ool

Responsible partner Fraunhofer

Parent Component Web Portal

Description Shows the status of experiments and of the resources used by

experiments.

Provided

functionalities

- Show status of experiments (filtered by user rights)

- Show status of resources (filtered by experiments & user rights)

Relation to other

components
- IN « Launching service (state of experiments)

- IN « Launching service (state of resources)

Related user case

sections

- 4.4 Experiment launching and execution

Table 7: Experiment Monitoring Tool

Component System Monitoring Tool

Responsible partner Fraunhofer

Parent Component Web Portal

Description Shows the status and the readiness of the various RAWFIE services

(mainly the ones residing in the middle tier)

Provided

functionalities

- Show status of RAWFIE system infrastructure

- Highlight potential problems

Relation to other

components
- IN « System Monitoring Service (state of middle tier

infrastructure)

Related user case

sections

- 4.8 monitoring

Table 8: System Monitoring Tool

Component UxV Navigation Tool

Responsible partner CERTH

Parent Component Web Portal

Description This component will provide to the user the ability to remotely navigate

a squad of UxVs. Through a user friendly interface, the experimenter

will specify the required details of the experiment, providing

information regarding the number of the vehicles, the number of the

 D4.1 - High Level Design and Specification of RAWFIE Architecture

19

units etc.

Navigating an UxV is not an easy task and requires initial instructions

and an extensive training to become proficient. The UxV Navigation

Tool will provide the ability to non-expert users to remotely guide a

squad of robotic vehicles so as to perform basic navigation missions

such as waypoint navigation, map construction, area surveillance and

path planning.

The virtual controller will allow the experimenter to guide the vehicles

using a turn based navigation mechanism and to collect data from their

equipped sensors. Through the provided interfaces, users, specify the

next desired location for each unit. In the sequel, these instructions are

transmitted to the ñResource Controllerò and sequentially, are

translated, evaluated and delivered to the robots. When all the vehicles

reach their desired position, the UxV Navigation Tool is ready to accept

a new set of instructions.

It is worth noting that in collaboration with the Monitoring tool, the

component will inform the experimenters about the current position of

the units, their sensorôs measurements etc.

Provided

functionalities

Experiments will have the ability to select the next desired location for

each unit using one of the following interfaces:

- A map of the area will illustrate the current position of each

robot. Simply, by clicking on the map, the users define the next

desired location.

- Users will also have the option to manually navigate the robots

by providing the coordinates of the next chosen position

Relation to other

components
- OUT ­ Resource Control (transmitting the userôs instructions)

- OUT ­ System Monitoring Tool

Related user case

sections

- 4.10 UxV remote control

Table 9: UxV Navigation Tool

Component Visualization Tool

Responsible partner EPSILON

Parent Component Web Portal

Description 2D or/and 3D visualisation of the resources in an experiment

Provided

functionalities
¶ (Real time) Geospatial data visualisation (WMS and WFS

services) in 2D or/and 3D;
¶ Show/track all moving UxV resources;
¶ visually connect components and display relevant parameters

through WPS service
Relation to other

components
- IN « Use the UxV resource/Data service

- IN « Visualization engine

 D4.1 - High Level Design and Specification of RAWFIE Architecture

20

Related user case

sections

- 4.7 View visualization of running experiment

Table 10: Visualization Tool

Component Data Analysis Tool

Responsible partner HES-SO

Parent Component Web Portal

Description Starts data analysis learning tasks and displays their results.

Provided

functionalities

- Starts data analysis processes

- Visualizes data from the ñMeasurements, Results, Statusò

repository

- Browses the results from past analysis

- Provide commands to the Data Analysis Engine

- Specifies data analytical/learning tasks to be executed on

specific streaming datasets

Relation to other

components
- IN « Measurements, Results and Status repository

- IN/OUT ª Data Analysis Engine (results/commands)

Related user case

sections

- 4.6 Data analysis

Table 11: Data Analysis Tool

3.2 Middle Tier

Component EDL Compiler & Validator

Responsible partner UoA

Parent Component None

Description The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts. The validation will be

performed on top of the proposed EDL model that will be based on a

specific grammar. The EDL will give the opportunity to developers to

define commands related to the experiments covering issues like spatio-

temporal instructions to the UxVs, communication, control, sensing or

nodes and data management. The validator will access the provided

script and identify any semantic errors that could jeopardize the

execution of the experiment.

Specific constraints should be fulfilled when the experiment workflow

is defined. These constraints will be continuously checked by the

proposed authoring tool and in case some of them are validated to be

false, the errors will be presented to the experimenters through various

means (e.g., warnings). Finally, when no errors are present, the

component will have the opportunity to generate specific files e.g., part

of the final code to be uploaded in the UxVs, input to the validator,

input to the testbed proxy).

 D4.1 - High Level Design and Specification of RAWFIE Architecture

21

Provided

functionalities

Validated EDL scripts created either with the textual or the visual editor

are based on the EDL grammar and a set of pre-defined rules (i.e.,

syntactically, regarding spatial and/or spatiotemporal availability of

selected resources, control). The following list presents the

functionalities offered by the validator:

- It provides syntactic and semantic validation of each experiment

workflow.

- It applies a set of constraints that should be met in order to have

a valid experiment.

- It is capable of applying semantic checking for nodes

communication, spatio-temporal management, sensing and data

management.

- It performs code generation in the appropriate format in order to

be uploaded into the RAWFIE nodes.

Relation to other

components

The validator will be connected with the provided editors as well as

with components available in the data and the middle tier. The

authoring tool will provide input to the validator in the form of an

experiment workflow. The validator will retrieve the necessary data

(e.g., EDL model, constraints, templates) stored in the data tier and will

generate specific code blocks ready to be uploaded in the available

nodes. The output of the validator will be adopted by a number of

components like the Experiment Validation Service (EVS) or the

Launching Service and the Experiment Controller. Moreover, the EDL

validator will have access to the services provided in the data tier in

order to store or retrieve parts or a whole experiment. Finally, specific

parts of an experiment will be transferred to the testbed tier and, thus,

the EDL validator will be combined with services available in the lower

tier of the RAWFIE architecture. The following reports on the

connection of the EDL Compiler & Validator with the remaining

components of the RAWFIE architecture:

- IN « Experiment Authoring Tool

- OUT ­ Experiments and EDL Repository

- OUT ­ Experiment Validation Service

- OUT ­ Experiment Controller

- OUT ­ Testbed Proxy

Related user case

sections

- 4.2 EDL editing

Table 12: EDL Compiler & Validator

Component Experiment Validation Service

Responsible partner UOA

Parent Component None

Description The Experiment Validation Service (EVS) will be responsible to

validate every experiment as far as execution issues concern. This

 D4.1 - High Level Design and Specification of RAWFIE Architecture

22

means that the EVS will validate if each experiment can efficiently be

executed in the selected testbed. The aim is to have the RAWFIE

following a pro-active approach through which the framework will be

confident that an experiment will be executed without any problems. A

number of constraints will be defined by experts that should be met

during the experiment execution. Constraints will be related to the

spatio-temporal aspect of the experiments. For instance, the EVS should

check if during the execution of an experiment collisions are avoided

and UxVs will efficiently fulfil their mission. For this, the routes of each

UxV should be defined and possible collisions will be identified. This

will stand either in terms of a single experiment or in terms of multiple

experiments. Hence, RAWFIE will be capable of supporting the

execution of multiple experiments running in parallel if, of course, there

is availability of UxVs. Cross experiments validation will be performed

accompanied by qualitative characteristics of an experiment. For

instance, the EVS, based on each experiment workflow, will retain

security and qualitative issues. Communication between nodes will be

secured as well as collision avoidance and qualitative control activities.

Provided

functionalities

The EVS aims to secure the qualitative and efficient execution of each

experiment. Validated EDL scripts will be the input to the EVS and the

result will be a set of possible errors that the experimenter should

satisfy before the actual execution of the experiment. The following list

presents the functionalities offered by the EVS:

¶ It provides semantic validation of each experiment workflow for the

specific testbed.

¶ It checks the fulfilment of a set of constraints defined by experts for

the specific testbed.

¶ It is capable of retaining security issues e.g., collision avoidance, and

the qualitative aspects of each experiment. Efficient communications

and control of the UxVs team will be performed in order to increase

the performance of the system.

¶ It performs cross experiment validation in order to help in

maximizing the performance of RAWFIE framework.

Relation to other

components

The EVS will be combined with the EDL validator receiving the

experiment workflow as input. The EVS will result in a set of errors or

will confirm the efficient execution of an experiment, information that

will be adopted by other middle tier services (e.g., launching service,

experiment control). Moreover, the EVS will have access to the services

provided in the data tier in order to retrieve parts or a whole experiment.

Finally, specific parts of an experiment will be transferred to the testbed

tier and, thus, the EVS will be combined with services available in the

lower tier of the RAWFIE architecture. The following reports on the

connection of the EDL Compiler & Validator with the remaining

components of the RAWFIE architecture:

- IN « EDL Compiler & Validator

- IN « Testbeds Directory Service

 D4.1 - High Level Design and Specification of RAWFIE Architecture

23

- IN « Testbeds and resources Repository

- IN/OUT ª Experiments and EDL Repository

- OUT ­ Experiment Authoring Tool

Related user case

sections

- 4.2 EDL editing

Table 13: Experiment Validation Service

Component Users & R ights Service

Responsible partner Fraunhofer

Parent Component None

Description Manages all the users, roles and rights in the system.

Provided

functionalities

- Check the authentication of uses

- Authorization service (check if a user is allowed to do an

specific action)

Relation to other

components

- All components that need to check users authentication and

authorizations

Related user case

sections

- 4.1 User login, authentication and authorisation

Table 14: Users & Rights Service

Component Booking Service

Responsible partner Fraunhofer

Parent Component None

Description Manages bookings of resources

Provided

functionalities

- Coordinate use of testbed resources among experimenters

- Notification mechanisms (reminder for experiments)

- Ensure fairness in resource bookings

Relation to other

components
- IN/OUT ª Booking Service (new bookings/existing bookings)

- IN/OUT ª Bookings Repository (existing bookings/new

bookings)

Related user case

sections

- 4.3.2 Book a resource

Table 15: Booking Service

Component Launching Service

Responsible partner UOA

Parent Component None

Description Schedules and launches executions of the experiments together with the

assigned booked resources

The Launching Service (LS) will be responsible for scheduling the

execution of experiments. It will support two aspects of launching:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

24

(a) Short-term launching: The LS through a specific interface will

give the opportunity to experimenters to execute in real time pre-

defined and pre-approved experiments stored in the RAWFIE

system. It should be noted that this functionality will be available if

the corresponding testbed is already configured (i.e., UxVs are in

place and the necessary code is uploaded to nodes). The LS will

take as input the experiment(s) and will execute them in sequential

or in parallel according to the experimenters directions.

(b) Long-term launching: The LS will identify which experiment

should be executed according to the available bookings. It should

be noted, that the LS will execute only authorized and approved

experiments based on spatio-temporal constraints.

Provided

functionalities

The LS will provide the following functionalities:

- It schedules experiment executions based on experimenters

bookings.

- It initiates the execution of an experiment or set of experiments

real time or according to the scheduling

- It schedules the sequential or the parallel execution of

experiments.

- It supports the real time execution of pre-defined and pre-

approved experiments.

Relation to other

components

The LS will have interaction with a number of components in the

middle, data and testbed tiers. It will receive/retrieve instructions from

experimenters through real time interaction or through bookings.

Accordingly, it will send instructions to the testbed tier in order to

secure the execution of an experiment.

- IN « Experiment Authoring Tool

- IN « Bookings Repository

- OUT ­ Testbed Proxy

- OUT ­ Experiment Controller

Related user case

sections

- 4.4 Experiment launching and execution

Table 16: Launching Service

Component Experiment Controller

Responsible partner CERTH

Parent Component None

Description The Experiment Controller (EC) is a service placed in the Middle tier

and is responsible to monitor the smooth execution of each experiment.

The task of the EC is not on the control of the UxVs directly as this will

be done through the Testbed Proxy. The main task is the monitoring of

the experiment execution while acting as óbrokerô between the

experimenter and the resources in (near) real time.

The EC will provides capabilities to support ócomplexô experiments

 D4.1 - High Level Design and Specification of RAWFIE Architecture

25

possibly involving multiple testbeds as well as to support the manual

override of specific instructions to the resources while the experiment is

running. The EC will identify if the experiment runs smoothly and will

inform the upper layer in order to present the necessary information to

the experimenter. In addition, the EC will control the data (raw or

processed) sent back by the nodes. Hence, the EC, among others, will

have access in the Data tier in order to be capable of retrieving the

necessary data. The use of the EC in the middle tier gives RAWFIE the

opportunity to include more intelligence in the functionalities provided

related to the execution of the experiments and the level description to

waypoints (.eg., implmeent patterns of vehicle movement like

expanding ring).For instance, the system could have a view on the

correct execution of the experiment workflow, to combine multiple

UxV / Testbed types in the same experiment or to be able to monitor the

execution of more complex scenarios.

Provided

functionalities
¶ The EC monitors the course of actions during the experiments

execution and informs the appropriate services in the Front-end

layer.

¶ It gains access to the Data tier in order to be capable of

retrieving data that are going to be presented in the upper layer.

¶ It forwards instructions from the experimenter to the resources

for overriding the already defined experiment workflows.

Relation to other

components
- IN « Launching Service

- IN/OUT ª Testbed Proxy

- IN/OUT ª Measurements, Results & Status

- OUT ­ System Monitoring Tool

- OUT ­ Experiment Monitoring Tool

Related user case

sections

- 4.4 Experiment launching and execution

Table 17: Experiment Controller

Component Data Analysis Engine

Responsible partner HES-SO

Parent Component None

Description Enables the execution of data processing jobs by sending requests to the

processing engine (either stream processing engine, batch or micro-

batch). Contains two major components:

- Compute Engine: the implementation that distributes

computations (eg: BLAS operations, etc).

- Frontend: the portion that relays data to the compute engine. It

also is responsible for requesting all available data (requirement:

message bus schema registry).

Provided - Requests available schemas from the Schema registry. This is a

 D4.1 - High Level Design and Specification of RAWFIE Architecture

26

functionalities sub-component of the message bus. It is the portion that handles

version invariance.

- Requests the execution of a stream/batch processing job

- Browses the results from the different analyses on the key-value

cache system, which contains the results of the analysis.

- Stores the results of the analysis on a NoSQL database store.

Relation to other

components
- IN/OUT ª Data Analysis Tool

- IN/OUT « Measurements, Results and Status Repository

(measurements/results)

Related user case

sections

- 4.6 Data analysis

Table 18: Data Analysis Engine

Component System Monitoring Service

Responsible partner Fraunhofer (CERTH)

Parent Component None

Description Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels.

Predefined actions are triggered whenever the corresponding conditions

are met, or whenever thresholds are reached, or whenever an event or

set of events are encountered, or the output of the previously mentioned

operations is stored for reference or forwarded to another process

Provided

functionalities

- Check the performance, utilizing Key Performance Indicators

(KPI)

- Run predefined action when triggers are reached

- Send notifications (e.g. via email)

- Capture alarms caused by malfuction or underperformance of

the equipment.

Relation to other

components
- IN « Status and performance values from all middle tier

components

- OUT ­ System Monitoring Tool

- OUT ­ some component (preforming a predefined action)

- OUT ­ some messaging system (user notifications e.g. via

email)

Related user case

sections

- 4.8 System monitoring

Table 19: System Monitoring Service

Component Testbeds Directory Service

Responsible partner IES

Parent Component None

Description Represents a registry service of the middleware tier where all the

 D4.1 - High Level Design and Specification of RAWFIE Architecture

27

integrated testbeds and resources accessible from the federated facilities

are listed, belonging to the RAWFIE federation.

This service will be the actual software interface for the Testbed

Directory, that will include information relevant to the testbeds and

possibly their resources (location, facilities) as well information on the

capabilities of a particular resource and its requirements for executing

experiments e.g. in terms of interconnectivity or dependencies

Provided

functionalities

Provides an Application Programming Interface (API), implemented

using standard architectural styles and protocols such as REST or

SOAP Web Services. This API allows other components to get access

to the information contained in the corresponding repository (Testbeds

& Resources).

Provides the pointers to the different testbeds belonging to the

RAWFIE federation.

In particular, using the provided software API it will be possible to:

- Populate the Testbeds & Resources Repository

- Look at the available testbeds list, and at their status (free,

booked, in use, and so on)

- Look at the available resources within a given testbed, and at

their status (free, booked, in use, not operational, and so on)

- Look at the description and characteristics of the testbeds (name,

location, available resources)

- Look at the description and characteristics of each resource in a

given testbed

- Look at the testbeds and resources capabilities in terms of

available technologies and tests

Relation to other

components
- IN/OUT ª Resource Explorer Tool

The component API is invoked by the Resource Explorer tool to

list the available testbeds and, for each testbed, the available

resources. This service will be accessed whenever an

experimenter wants to retrieve information related to available

testbeds and resources using the respective front-end tool.

- IN/OUT ª Testbeds & Resources Repository

The provided API, which will be in charge of executing the

queries to the Testbeds & Resources Repository, could also

allow advanced searching capabilities based on specific filters.

Related user case

sections

- 4.3.1 Search for a resource

Table 20: Testbeds Directory Service

Component Message Bus

Responsible partner IES

Parent Component None

Description Message Oriented Middleware used across all tiers to enable

 D4.1 - High Level Design and Specification of RAWFIE Architecture

28

asynchronous, event-based messaging between heterogeneous

components. Implements the Publish/Subscribe paradigm.

Different message brokers implementations and protocols for data

formatting and messaging will be investigated, these include:

- ActiveMQ

- RabbitMQ

- Apache Kafka

- MQTT

One or more of the above solutions are expected to be part of the

RAWFIE architecture, according to the requirements that will identified

for each specific communication scenarios, ranging from the need to

publish UxVs measurements to the software components running on the

upper layers, to the communication between the upper layers software

components themselves. Some information about the abovementioned

message brokers implementation and protocols are provided in Section

5.2.9.

Provided

functionalities

- Send asynchronous notifications on specific events (e.g. booking

notifications)

- Handle Publisher/Subscriber (or Publisher/Consumer)

relationships between components

- Possibility to buffer messages persistently, to ensure delivery of

messages even in case of network or system fault

- Ability to handle messages sent at various different revisions:

This prevents consumers subscribed to previous revisions from

having their components break. This allows for producer side

addition/modification of new/existing fields (correspondingly)

while not breaking consumer processes. This is added as a

general concept in the architecture as 'Schema Registry'

Relation to other

components

Different components are involved in the communication through the

Message Bus. Possible communication scenarios include the ones

described in the following

IN «

- the Resource Manager in the Testbed Tier publishes information

on measurements through the message broker in the Monitoring

& Testbed Manager

- the Resource Manager tracks information on the position of the

UxVs while the test is running, and publish them for the 3D

Visualisation Engine / Tool (for final visualisation of the

resources position on the Web Portal)

OUT ­

- the Resource Manager in the Testbed Tier gets measurements or

other information about the status of a specific resource (UxV)

Communication between different UxVs while an experiment is

running

- the Monitoring Service / Tool consume information on

measurements published by the Resource Manager

 D4.1 - High Level Design and Specification of RAWFIE Architecture

29

- the 3D Visualisation Engine / Tool consume information about

the positions of resources (resources tracks), for final

visualisation on the Web Portal

Related user case

sections

Use case diagrams related to the Message Bus will be detailed in next

WP4 deliverables
Table 21: Message Bus

3.3 Data tier

Component Testbeds & Resources Repository

Responsible partner IES

Parent Component None

Description The Testbed and Resources Repository contains relevant information

about available testbeds (federated through the RAWFIE platform) and

their resources , such as:

- Testbed name and testbed URL (if a dedicated access portal is

also available for a specific testbed)

- Description and overview of each testbed facilities, and

corresponding resources (e.g. available UxVs)

- Overview of the reservations linked to each specific testbed

(through the relationship with the Booking Directory)

- Description and overview of specific resources (e.g. type,

technologies, tests that can be executed, and so on) for each

given testbed

- Information on the capabilities of a particular resource and its

requirements for executing experiments e.g. in terms of

interconnectivity or dependencies

Provided

functionalities

For each testbed at least the following information shall be available:

- Its name

- Its location

- A short description (possibly mentioning guidelines applying to

the testbed usage)

- Type of resource(s) available

- Total number of resources available

- Total number of resources in use

- List of resources with an indication as ñavailableò or ñbookedò

- EDL control capabilities supported

- Connectivity status

Relation to other

components
- IN/OUT ª Testbeds Directory Service

Related user case

sections

- 4.3.1 Search for a resource

Table 22: Testbeds & Resources Repository

 D4.1 - High Level Design and Specification of RAWFIE Architecture

30

Component Experiments & EDL Repository

Responsible partner UoA

Parent Component None

Description The Experiments and EDL Repository (EER) provides the necessary

functionalities for having the experiments and EDL related data stored

in to the data tier. The EDL scripts, templates and pre-defined

constraints will be stored in the appropriate format in order to be

efficiently retrieved by the rest component of the RAWFIE framework.

It should be noted that the appropriate metadata will be adopted for each

experiment. The access to the EER will be done through interoperable

interfaces ensuring the compatibility and interoperability with other

components of the architecture.

Provided

functionalities

The EEE functionalities are as follows:

- It provides functionalities for searching, retrieving, storing and

updating of EDL scripts.

- It supports versioning of the available experiments.

Relation to other

components

The EER will be mainly combined with the components related to the

middle tier responsible for handling the experiment workflows.

Related user case

sections

- 4.2 EDL editing

Table 23: Experiments & EDL Repository

Component Bookings Repository

Responsible partner Fraunhofer

Parent Component None

Description Stores bookings and reservations of resources

Provided

functionalities

- Store time and resources that are reserved by an experimenter

Relation to other

components
- IN/OUT ª Booking Service

Related user case

sections

- 4.3.2 Book a resource

Table 24: Bookings Repository

Component Measurements, Results & Status Repository

Responsible partner HES-SO

Parent Component None

Description Data Stored includes:

- State of experiment executions

- Raw measurements collected during an experiment

- Results of data analyses of measurements

 D4.1 - High Level Design and Specification of RAWFIE Architecture

31

Provided

functionalities

- Load & store

Relation to other

components
- IN « UxV (via Experiment Controller) (store measurements)

- IN/OUT ª Data Analysis Engine (results/measurements)
Related user case

sections

- 4.6 Data analysis

Table 25: Measurements, Results & Status Repository

Component Users & Rights Repository

Responsible partner Fraunhofer

Parent Component None

Description Management of authorizations and access rights. Will probably use a

LDAP server.

Provided

functionalities

- LDAP interface

Relation to other

components
- IN/OUT ª Users & Rights Service

Related user case

sections

- 4.1 User login, authentication and authorisation

Table 26: Users & Rights Repository

3.4 Testbed tier

Component Testbed Proxy

Responsible partner UOA

Parent Component None

Description Handles the communication between the testbed facility and the rest

tiers of RAWFIE architecture. It lies on the server side of each

RAWFIE compliant testbed facility. Several instances of Testbed proxy

can run at the same time in a RAWFIE testbed facility.

Provided

functionalities

- Ensures communication with Middle Tier

- Ensures communication with Data Tier

Relation to other

components
- IN/OUT ª

o Monitoring Service

o Resource Directory Service

o Experiment Controller

- OUT ­

o IP addresses of TP of the integrated testbed are registered

to Testbed Directory.

o Testbed and Resources Repository

o Measurements Results and Status

 D4.1 - High Level Design and Specification of RAWFIE Architecture

32

Related user case

sections4

- 4.3 Resource booking and reservation

- 4.4 Experiment launching and execution

- 4.5 Measurements recording

- 4.9 Testbed monitoring
Table 27: Testbed Proxy

Component Testbed Manager

Responsible partner UOA

Parent Component None

Description Contains accumulated information from the experiments and the devices

in the testbed. It is responsible to address initial testbed registration and

periodic updates of testbed on-going experiments. This information is

accessed by the relevant middle tier service.

Provided

functionalities

- Registers the testbed to the middle tier

- Contains the registration log for the experiments in the tested

- Periodically checks the status of the experiments

- Forwards the status of the experiments to Data Repository and to

Monitoring Tool

- Stores configuration parameters for the UxVs in the relevant

Testbed

- Buffer data in case of network connection loss to the Middle

Tier. The TM stores the last instance of each experiment as a fall

back mechanism in case that testbed loses the connection with

the middle tier. For example if there is a network problem during

the execution of the experiments, TM stores the information that

would be forwarded to the Data tier.

Relation to other

components
- IN/OUT ª Testbed Proxy

- IN/OUT ª Experiment Controller

Related user case

sections

- 4.3 Resource booking and reservation

- 4.4 Experiment launching and execution

- 4.5 Measurements recording

- 4.9 Testbed monitoring
Table 28: Testbed Manager

Component Monitoring Manager

Responsible partner UOA

Parent Component None

Description Monitors the status of the testbed and the devices belonging to it, at

functional level, i.e the óhealth of the devicesô and current activity.

Provided

functionalities

- Periodically check the current status of the available resources in

the facility like battery lifetime, CPU load, free RAM, bit error

 D4.1 - High Level Design and Specification of RAWFIE Architecture

33

rate, etc.

- Periodically check the status of the testbed facilities like weather

conditions, network connections available, etc.

- Stores the status of the testbed characteristics and the devices in

a data log.

Relation to other

components
IN/OUT ª Testbed Proxy

IN/OUT ª Data Tier

Related user case

sections

- 4.3 Resource booking and reservation

- 4.9 Testbed monitoring
Table 29: Monitoring Manager

Component Network Controller

Responsible partner Uoa

Parent Component None

Description Manages the network connections and the switching between different

technologies in the testbed. For example if a problem occurs in the

communication of the resource with the RC and subsequently with the

Experiment Manager on the RAWFIE middleware, a fall-back interface

is engaged. Through this procedure, the other networking

interface/device is enabled to avoid the uncontrolled operation of the

mobile unit and associated damages in the infrastructure. In addition this

component is responsible for security issues. The switching alternative

can be also triggered by the executed experiment.

Provided

functionalities

- Interfaces a local authorization module for allowing direct

booking and executing RAWFIE compliant experiments

- Provisioning of the network connections/technologies required

during an experiment

- Checks the communication when devices are moving between

obstacles

Relation to other

components
IN/OUT ª Testbed Proxy

IN/OUT ª Experiment Controller

Related user case

sections

- 4.4 Experiment launching and execution

- 4.9 Testbed monitoring

- 4.10 UxV remote control
Table 30: Network Controller

Component Resource Controller

Responsible partner CERTH

Parent Component None

Description The core component of the navigation system is the ñResource

Controllerò which ensures the safe and accurate guidance of the UxVs.

RC commands each device to switch onboard sensors on and off At the

same time, Resource Controller informs the ñMonitoring Toolò and

 D4.1 - High Level Design and Specification of RAWFIE Architecture

34

Data Tier for the gathered measurements of the sensors of each device.

ñLaunching Toolò interacts with the "Experiment Controller" so as to

transfer userôs preferences and instructions regarding the experiment.

The ñExperiment Controllerò initially, triggers the ñExperiments and

EDL Repositoryò component and receives the userôs directions,

translated in a form of a set of waypoints. These waypoints provide

basic information about the preferable locations for each UxV. The set

of the waypoints for each robot defines the path that the experimenters

have shaped. For the navigation of a robot from its current position to

the location described by the next waypoint, the system requires a turn.

The main objective of the ñResource Controllerò component is to

optimize the navigation process which takes place during a turn.

Resource Controller component navigates simultaneously all the units

of the squad. It is worth noting that the time needed for each robot to

reach its desired location is not the same for all units. Thus, the turn

concludes when all the robots reach their next location.

Additionally, it is worth mentioning that in case of emergence, the

ñResource Controllerò collaborates with the ñTestbed Proxyò so as to

navigate the units back to a safe position, as soon as possible.

Provided

functionalities

- The calculation the near-optimal path that the vehicles should

follow in order to reach the desired location.

- The translation of the operatorôs/experiment instructions into a
reference scheme, compatible with the ñTestbed Proxyò.

- The assurance that the system is performing as intended and that

the equipment is safe.

- Publish sensor values to the Data Tier/ Monitoring Tool

Relation to other

components
- IN « Launching Service

- IN/OUT ªTestbed Proxy

- IN/OUT ªMonitoring Tool

- IN/OUT ªData Tier

- IN/OUT ªExperiment Controller
Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)
- 4.11 UxV remote control (CERTH)

Table 31: Resource Controller

Component Navigation Service

Responsible partner CERTH

Parent Component Resource Controller

Description The main objective of the ñNavigation Serviceò component is to

optimize the navigation process which takes place during a turn.

- The optimization algorithm will be based on the Cognitive-

based Adaptive Optimization (CAO) approach. CAO transforms

the navigation problem into an optimization one, which in every

 D4.1 - High Level Design and Specification of RAWFIE Architecture

35

time step the goal is to optimize the location of the UxVs so to

meet the objectives of the mission with respect to a set of

constraints.

Provided

functionalities

- Validate the next candidate position for each vehicle

Relation to other

components
¶ IN/OUT -> Resource Controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)
- 4.11 UxV remote control (CERTH)

Table 32: Navigation Service

Component UxV node

Responsible partner CSEM (MST, Robotnik)

Parent Component None

Description A single UxV node. The UxV is a complete mobile system that interacts

with the other Testbed entities. It can be remotely controlled or able to

act and move autonomously

Provided

functionalities

According to [Brugali 07] the UxV can be decomposed into four groups

(hardware interfaces, information processing, vehicle control, decision

making). They include the following unordered and non-exhaustive list

of functions and services:

- Physical interfaces to vehicle actuators and sensors

Network connection

- Data acquisition

- Data storage

- Data pre-processing (aggregation, fusion, etc.)

- Data management, representation, transfer, etc.

- Local time reference and time stamping service

- Location reference and geo-tagging service (location retrieval,

coordinate management)

- Navigation and autonomous control (involves an internal

representation of its environment, map, location awareness, path

planning, obstacle avoidance, waypoint management, hazard

management), decision-making service.

- Remote control interface, Human Robot Interaction [Goodrich

07]

- Status of the UxV (attitude-inertial measurement unit, energy,

speed, sanity, mode, etc.)

- Identification, transponding, friend or foe

Payload status

- Etc.

The specific component that allows the UxV for interacting with the

Testbed and its constituents is making use of several of the above

function and services. It will feed the Testbed experiment database with

collected data, recorded events, flight information, etc.) and it will be

 D4.1 - High Level Design and Specification of RAWFIE Architecture

36

fed with the instructions and commands corresponding to the mission it

is assigned to in the context of the experiment. It may offer a relay

platform for other Testbed components to transfer data to the ground

control and experiment control.

Relation to other

components
- IN/OUT ª Resource Controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
 Table 33: UxV node

Component UxV - Network communication

Responsible partner CSEM

Parent Component UxV node

Description Provides communication services to the UxV

These services form the basis for the other services to interact with the

UxV (basically all features listed in the UxV node.

Provided

functionalities

- Identification service

- Data transfer service

- Status notification

- Capabilities and directory services

- Reconfiguration

Relation to other

components
- IN/OUT ª Network controller

- IN/OUT ª Experiment controller

- IN/OUT ª System monitoring

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 34: UxV - Network communication

Component UxV ï Sensors & Localization

Responsible partner CSEM (MST, Robotnik)

Parent Component UxV node, fixed testbed node

Description Provides interfaces todifferent s installed on the UxVsensor

Provided

functionalities

Sensors are providing the application with measurement points,

typically tuples made of a location a timestamp, a source sensor and one

or several samplings.

Localisation is a specific type of measurement using positioning

systems or a combination of measurements to estimate a location.

- Estimated position of the UxV and collected data

- Sensors (fixed and mountable)

- Raw data acquisition

 D4.1 - High Level Design and Specification of RAWFIE Architecture

37

Relation to other

components
- OUT ­ On board processing

- OUT ­ On board storage (buffering)

- OUT ­ Measurements, Results &Status Repository

- IN/OUT ª Experiment controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 35: UxV ï Sensors & Localization

Component UxV ï On board storage

Responsible partner CSEM (MST, Robotnik)

Parent Component UxV node

Description Provides storage of data inside the UxV

Provided

functionalities

- The UxV embeds some storage to store data. Typically, the data

corresponds to measurements that cannot be sent over the

communication link to the testbed manager

- Status UxV information produced during an experiment will be

internally stored for later UxV maintenance

Relation to other

components
- IN « UxV ï Sensors & Localization

- IN/OUT ª Network controller

- OUT ª Resource controller

- IN/OUT ª Measurements, Results & Status Reposotiry

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 36: UxV ï On board storage

Component UxV ï On board processing

Responsible partner CSEM (MST, Robotnik)

Parent Component UxV node

Description Provides processing of data inside the UxV

Provided

functionalities

- The UxV is able to process the sampled data produced by its

sensors or other information it has received through the

communication links to either increase the information level or

compress the data elements into more concise or aggregated

forms, such as compressed format, spectrographic analysis,

averages, FFT, etc.

Relation to other

components
- IN « UxV ï Sensors & Localization

- IN/OUT ª Network controller

- IN/OUT ª Experiment controller

- IN/OUT ª Measurements, results & status

Related user case - 4.4 Experiment launching and execution (UOA and CERTH)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

38

sections - 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 37: UxV ï On board processing

Component UxV ï Device management

Responsible partner CSEM

Parent Component UxV node

Description Provides network management for the UxV

Provided

functionalities

- Network connection to the base state

- Ad-hoc networks

- Device sensor controlling

Relation to other

components
- IN/OUT ª Network controller

- OUT ª Resource controller

Related user case

sections

- 4.4 Experiment launching and execution (UOA and CERTH)

- 4.9 Testbed monitoring

- 4.11 UxV remote control (CERTH)
Table 38: UxV ï Device management

 D4.1 - High Level Design and Specification of RAWFIE Architecture

39

3.5 Requirement mapping

The following table shows an overview which requirements (from D3.1) can be mapped to a component. Please note, that a couple of

requirements were not mapped to the architecture in this first phase. This refers to requirements PT-B-007 and TB-G-009 which are

expected to be handled in the second version of the architecture.

Components Functional Requirements Non Functional Requirements

Global PT-NF-008, PT-NF-007, PT-NF-006,

PT-NF-004, PT-NF-009, PT-NF-012

Front end tier PT-NF-001

Web Portal PT-GEN-001, PT-GEN-002, PT-P-002

Resource Explorer Tool PT-P-001, PT-A-016

Booking Tool PT-A-016, PT-B-001, PT-B-002, PT-B-003, PT-B-

005, PT-L-002

PT-NF-002

Experiment Authoring Tool PT-A-001, PT-A-002, PT-A-004, PT-A-005, PT-A-

006, PT-A-007, PT-A-008, PT-A-009, PT-A-010, PT-

A-011, PT-A-012, PT-A-013, PT-A-015, PT-L-010

Experiment Monitoring Tool PT-L-001, PT-L-003, PT-L-004 PT-NF-005

System Monitoring Tool PT-GEN-004

UxV Navigation Tool PT-L-008, PT-L-009

Visualization Tool PT-A-013, PT-L-006

Data Analysis Tool PT-E-003

Middle tier PT-NF-001, PT-NF-010, PT-NF-011

EDL Compiler & Validator PT-A-003, PT-A-014

Experiment Validation Service PT-A-009, PT-L-001

Users & Rights Service PT-GEN-002 PT-NF-002

Booking Service PT-B-003, PT-B-005, PT-B-006, PT-B-004 PT-NF-002

Launching Service PT-L-002, PT-L-003, PT-L-007, PT-E-001

Experiment Controller PT-A-005, PT-A-008, PT-L-008, PT-A-010, PT-L- PT-NF-005

 D4.1 - High Level Design and Specification of RAWFIE Architecture

40

009

Visualization Engine PT-L-005

Data Analysis Engine PT-E-002, PT-E-005

System Monitoring Service PT-GEN-004

Testbed Directory Service PT-P-004

Message Bus

Data tier PT-E-004 PT-NF-001, PT-NF-003, PT-NF-010

Testbeds & Resources

Repository

PT-P-003

Experiments and EDL

Repository

PT-P-005, PT-A-015, PT-E-001

Bookings Repository PT-A-015

Measurements, Results and

Status Repository

PT-A-007, PT-E-002

Users & Rights Repository PT-GEN-002

Testbed tier PT-NF-001

Testbed Proxy

Testbed Manager PT-P-003

Monitoring Manager

Network Controller

Resource Controller PT-NF-005

Navigation Service

UxV node PT-A-010, PT-E-002 PT-NF-005

UxV - Network communication

UxV ï Sensors & Localization

UxV ï On board storage

UxV ï On board processing

UxV ï Device management

Table 39: Allocation of Platform Requirements to Architecture Components

 D4.1 - High Level Design and Specification of RAWFIE Architecture

41

Components Functional Requirements Non Functional Requirements

Testbed tier TB-NF-G-002, TB-NF-G-005

Testbed Proxy TB-G-002 TB-NF-G-001, TB-NF-G-003, TB-NF-

G-004

Testbed Manager TB-G-003, TB-G-004, TB-G-005, TB-G-006, TB-G-

007, TB-I-001, TB-I-004, TB-R-005, TB-R-006, TB-

D-001, TB-D-002

Monitoring Manager TB-G-001

Network Controller TB-I-002, TB-I-003 TB-NF-G-004, TB-NF-G-003, TB-NF-

G-006

Resource Controller TB-G-003, TB-G-007

Navigation Service TB-G-008

UxV node TB-G-004, TB-R-001, TB-R-002, TB-R-003, TB-R-

005, TB-R-006, TB-R-007, TB-R-008, TB-R-009,

TB-R-010, TB-R-012, TB-R-013

TB-NF-R-001, TB-NF-R-003

UxV - Network communication TB-G-003, TB-I-002, TB-I-003, TB-R-013 TB-NF-G-006

UxV ï Sensors & Localization TB-G-005 TB-NF-R-002

UxV ï On board storage TB-R-004

UxV ï On board processing

UxV ï Device management TB-R-011
Table 7: Allocation of Testbed Requirements to Architecture Components

 D4.1 - High Level Design and Specification of RAWFIE Architecture

42

4 Potential use cases and sequence diagrams

In the following section, some common use cases (or user stories) are described and the

collaboration between the different components is examined. The use case consists of a

description/analysis followed by a sequence diagram that visualizes the interactions between the

components.

4.1 User login, authentication and authorisation

RAWFIE will support two user login mechanisms:

¶ Password-based:

o This is the common way to authentication a user by requesting username and

password. SSO will be available.

¶ Certificate-based

o Using X.509 client certificates to user is automatically authenticated during the

SSL handshake. (see section)

The communication between the components themselves will be secured using SSL on the

transport layer and X.509 client certificates, to control access to the services. For this purpose the

root certificate of the RAWFIE CA needs to be installed in every component and each

component will get its own signed client certificate (plus private key) to authenticate itself.

The ñUsers & Rights Serviceò will be contacted by all other components to check if a user has

the appropriate rights/roles to use them as well as to check whether a user is allowed to access or

edit a resource.
4

4.1.1 Password-based user login

¶ An user opens via its browser an application of the RAWFIE web page and requests a

restricted resource (URL)

¶ The application checks if the user is locally logged-in (e.g. via cookie for this application)

¶ If not

o Redirect to SSO page

o The SSO page checks if the user is globally logged in

o If not

Á The user is asked for credentials (username and password)

Á The SSO page sends the credentials to the User & Rights Service

4
 The RAWFIE internal access control between the components will be skipped in the most sequence diagrams, as it

is more or less a background process.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

43

Á The User & Rights Service checks the credentials and returns whether

they are OK

o The SSO page redirects to the original web page (with some login token as

parameter)

o The user requests the original web page again (with some login token as

parameter)

o The application checks the login token and creates a user session (e.g. transmitted

via an cookie)

¶ Proceed with ñCheck user authorisationò

Figure 2 - Sequence Diagram ï Password based user login

 D4.1 - High Level Design and Specification of RAWFIE Architecture

44

4.1.2 X.509 Certificate-based user login

¶ An user opens via its browser an application of the RAWFIE web page and requests a

restricted resource (URL)

¶ Client certificate validated during SSL handshake (transport layer)

o If correct: proceed processing in application layer

o If wrong: cancel SSL connection (end).

¶ Check if not logged-in (application layer)

o Read user name of the X.509 certificate and create a user session

¶ Proceed with ñCheck user authorisationò

Figure 3 - Sequence Diagram - Certificate-based user login

4.1.3 Check user authorisation

¶ After the user has logged in and has requested a restricted resource, the web application

checks if user is allowed to see the resource

¶ Component request the Users & Rights Service if there given user has the specific

role/right to see/edit this resource

¶ The Users & Rights Service doesé

o Check if the user exits

o Get groups of the user

 D4.1 - High Level Design and Specification of RAWFIE Architecture

45

o Check if the role members contains the user or one of the groups of the user

¶ If ok: grant access to the user

¶ If wrong: show access denied to the user.

Figure 4 - Sequence Diagram - Check user authorisation

4.1.4 Trusted and secure communication between the components

The components in RAWFIE should also use X.509 certificates to establish a trusted and secured

communication between them.

¶ component A calls service of another component B

¶ Transport layer: SSL handshake with client and server certificates (on error close

connection)

¶ If there is a need to verify the authorisation

o checks the certificate of the component A and reads the component name out of

the certificate

o Component B calls Users & Rights Service to check if component A or the user

that has initiated the whole process has the needed roles/rights

o Transport layer: SSL handshake with client and server certificates (on error close

connection)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

46

o The Users & Rights Service

Á checks the certificate of the component B and reads the component name

out of the certificate and..

Á checks if component B is allowed to read permissions

Á checks if component A or the user has the needed roles/rights

Á Returns the result (allowed/not allowed)

¶ If allowed

o component B executes the service method

o returns the result to component A

¶ If not allowed

o component B returns ñaccess deniedò to component A

 D4.1 - High Level Design and Specification of RAWFIE Architecture

47

Figure 5 - Sequence Diagram - communication between components

4.2 EDL editing

The EDL editing use case can be de-composed in two main functionalities Create and Validate

the EDL scripts. The following paragraphs elaborate on the actions to be performed. Basic

operations are also depicted in the sequence diagram. More specifically, the validation of the

EDL is performed by a two-phase validation mechanism

¶ Create an EDL script

o Open textual and visual editors

 D4.1 - High Level Design and Specification of RAWFIE Architecture

48

o Use functionalities simultaneously from both editors

Á Synchronization is supported

o Create a new EDL script to define an experiment or

o Edit a saved EDL script

o Save changes

¶ Validate EDL script

o Experimenter validates the EDL script by using the EDL Complier and Validator

component

o EDL Compiler and Validator retrieves EDL model from the Experiment and EDL

Repository in order to apply respectively the validation operations.

o The EDL validator returns syntactic and semantic errors to the experimenter

o Experimenter corrects the errors

o Experimenter starts the Experiment Validation Service (EVS) to validate the

defined experiment in terms of execution efficiency and spatiotemporal issues

o EVS validates the experiment according to specific rules and constraints

o Semantic errors are displayed to the Experimenter

o Experimenter corrects the errors

o The executed EDL script is stored to the Experiment EDL Repository

Figure 6 - Sequence Diagram - EDL editing

 D4.1 - High Level Design and Specification of RAWFIE Architecture

49

4.3 Resource booking and reservation

To find the appropriate resources (UxVs, testbeds) of his experimenter, an experimenter can first

search for a resource and following he starts the booking of its.

4.3.1 Search for a resource

To reserve a testbed or just some UxVs the experimenter/user needs to search for appropriate

resources (testbed, UxVs) via the RAWFIE web portal.

¶ The user opens the Resource Explorer Tool

¶ The Resource Explorer Tool loads the available testbedsô info from the Testbeds &

Resources Repository

¶ Resource Explorer Tool returns the list of testbeds to the user

¶ The user selects a testbed and opens the UxV view of the selected testbed

¶ The Resource Explorer Tool loads the available UxVs of the selected testbed from the

Testbeds & Resources Repository

¶ Resource Explorer Tool returns the list of UxVs to the user

¶ The user selects some UxVs and wants to start the booking

¶ Resource Explorer Tool sends a redirect to the booking tool containing the selected

resource IDs.

¶ The browser of the user follows the redirect and opens the booking tool (with the selected

resource IDs)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

50

Figure 7 - Sequence Diagram - Search for resource, select one and start booking

4.3.2 Book a resource

¶ Booking Tool starts with resources of interest

¶ Show calendar view with current bookings of the resources of interest

¶ User starts the booking of the resources (selects ñNew bookingñ from the UI)

¶ Show booking form

¶ User enters data (name, date, time, comments) and submits the form

¶ Booking data sent to Booking Service

¶ Booking Service loads all the bookings of the resource in the given time frame

¶ Check if there are any booking conflicts

¶ On OK: save booking and return ok

o Save the bookings

o Show success to user

¶ On conflict: return error

o Show conflict overview to user

 D4.1 - High Level Design and Specification of RAWFIE Architecture

51

Figure 8 - Sequence Diagram - Book a resource

4.4 Experiment launching and execution

RAWFIE will support two aspects of experiment launching: a) short-term launching and b) long-

term launching. In short-term launching (diagram 9) the experimenter through a specific element

of the Experiment Authoring Tool will execute pre-defined and pre-approved experiments stored

in the Experiment and EDL Repository. In case of the long-term launching (diagram 10) the

experiment is executed automatically by the launching service according to the experiment

schedule and booking.

4.4.1 Short-term launching

¶ Experimenter launches the experiment

 D4.1 - High Level Design and Specification of RAWFIE Architecture

52

¶ Experimenter opens the monitoring tool from the web portal in order to monitor the

experiment

¶ Launching service requests from Experiment and EDL Repository (EER) the instructions

for the experiment.

¶ These instructions trigger Experiment Controller which

a. Registers the experiment to Testbed Manager

b. Triggers Network manager for the provisioning of the network connections during

the experiment between the nodes

c. Forwards the instructions for experiment to Resource Controller

¶ Resource Controller transforms the experimenter instructions into a "global form" of

waypoints

¶ Resource Controller evaluates the path generated in the previous step to avoid constrains

and obstacles during the resource mission

¶ Resource Controller delivers the waypoints to the UxV nodes

¶ UxV node performs the respective actions and dispatches the relevant information back

to the Resource Controller

¶ Resource Controller after the internal processing returns the data to the Experimenter

Controller that transmit the collected data and monitoring results to the Experiment

Monitoring Tool

¶ Information and monitoring data is displayed to the Experimenter through the

Experiment Monitoring Tool of RAWFIE web portal component

 D4.1 - High Level Design and Specification of RAWFIE Architecture

53

Figure 9 - Sequence Diagram - Real time launching

4.4.2 Long term launching

¶ Launching service requests from Experiment and EDL Repository (EER) the instructions

for the experiment.

¶ These instructions trigger Experiment Controller which

a. Registers the experiment to Testbed Manager

b. Triggers Network manager for the provisioning of the network connections during

the experiment between the nodes

c. Forwards the instructions for experiment to Resource Controller

¶ Resource Controller transforms the experimenter instructions into a "global form" of

waypoints

¶ Resource Controller evaluates the path generated in the previous step to avoid constrains

and obstacles during the resource mission

¶ Resource Controller delivers the waypoints to the UxV nodes

¶ UxV node performs the respective actions and dispatches the relevant information back

to the Resource Controller

¶ Resource Controller after the internal processing returns the data to the Experimenter

Controller that transmit the collected data and monitoring results to the Experiment

Monitoring Tool

 D4.1 - High Level Design and Specification of RAWFIE Architecture

54

¶ Information and monitoring data is displayed to the Experimenter through the

Experiment Monitoring Tool of RAWFIE web portal component

Figure 10 - Sequence Diagram - Long term launching

4.5 Measurements recording

Measurements DB: The measurements database is strongly correlated with the implementation

of the message bus system. The reason for this is that data needs to be tee'd (aka forked) from the

message bus to a scalable volume storage system such as HDFS. Listed below is a suggested

data flow diagram that supports the design we proposed in section 4.6. This model is a standard

industry model and will best support the requirements for data analytics which will be worked

through in a later section. Storage of measurements is suggested to be done in a relational

database and the results of the analytics experiments is suggested to be in a NoSQL database.

HDFS provides fault tolerant storage that scales across machines (not like simple RAID based

arrays). The specific technology suggestions will be provided in a later section.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

55

Figure 11 - Sequence Diagram ï Measurements recording

4.6 Data analysis

The data analysis engine will seat on the top of the data stream management and computational

infrastructure. Through it we will offer the ability to select which streaming data to work with

and run a set of available machine learning and data mining operations on it. The interaction of

the data analysis engine with the data stream management and computational infrastructure is

described in the following sequence diagram.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

56

Figure 12 - Sequence Diagram ï Data analysis engine

4.7 View visualization of running experiment

The Visualization Tool will be built around a middleware engine that is capable of processing

data using parallel processing. The results will be rendered in the client application through the

web portal. The steps are sequential and will include:

 D4.1 - High Level Design and Specification of RAWFIE Architecture

57

Á Assemble or link to the data to be accessed by the Visualization Engine. This includes

video data, sensor data, GPS data, etc in a form that can be used by the visualization

engine.

Á Transform the data through filters (or the output of other filters) into a new usable

output. These filters use algorithms that can be freely chained together. The object

outputs can then be rendered separately by the Mappers and Actors.

Á Mappers transform the data into graphics primitives. For example, they can be used to

specify a look-up table for colouring specific data. They are an abstract way to specify

what to display.

Á Actors represent an object (geometry plus display properties) within the scene. Things

like color, opacity, shading, or orientation.

Figure 13 - Sequence Diagram ï Running experiment visualisation

 D4.1 - High Level Design and Specification of RAWFIE Architecture

58

4.8 System monitoring

The system monitoring corresponds to a continuous processing of events or parameter values,

(good or bad), which triggers notification, actions or other stream processing, such as filtering,

log, traces, storage, etc.

4.8.1 General monitoring activities

¶ Events and parameter values are received by the system monitoring service (KPI)

o via Message Bus

o via Service Call

¶ They are analysed by a pre-defined set of rule, filters, combinations, correlators, etc.

¶ Predefined actions are triggered

¶ Actions can be

o other computations,

o user notifications (e.g. via email),

o message posted to the Message Bus

o service calls on other components

¶ Storing of the logs and traces

¶ The logs and traces can be analysed after the execution (post-mortem analysis)

 D4.1 - High Level Design and Specification of RAWFIE Architecture

59

Figure 14 - Sequence Diagram ï System monitoring service ï General activities

 D4.1 - High Level Design and Specification of RAWFIE Architecture

60

Note that this process may be hierarchically applied at any level of the system, e.g. on a UxV

(Device management), in the Testbed (Monitoring manager) and at the RAWFIE Federation

level (Monitoring tool). An example is given in the Testbed monitoring (section 4.9).

4.8.2 Error notifications

¶ Messages of special events are permanently received by the Message Bus

¶ The System Monitoring Service runs on a periodic basis (triggered by an internal timer)

¶ Load event collected from the Message Bus

¶ It requests from all middle tier components the status values (KPI)

¶ After collection of all the status values, a summary is created

¶ In case of an error or serious problem, an error notification is issued via email to the a

RAWFIE Platform Administrator (admin)

¶ The admin reads the email and opens the System Monitoring Tool to get an up-to-date

overview of the system state

¶ The System Monitoring Tool request the current summary from the System Monitoring

Services and returns this report back to the admin

¶ The admin evaluates the summary and performs the appropriate steps the resolve the

issues.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

61

Figure 15 - Sequence Diagram ï System monitoring service ï Error notification

4.9 Testbed monitoring

RAWFIE provides overview of each integrated testbed with the status of the relevant devices.

System Monitoring Service has a request for the information of a specific testbed. This request is

forwarded by Testbed Proxy to two related components: Testbed Manager and Monitoring

Manager. Testbed Manager contains the information about the status of experiments that are

registered in this testbed. This is send back to System Monitoring Service through Testbed

Proxy. Monitoring Manager is responsible for the micro-management of the resources.

Information as battery lifetime, CPU load, free RAM, biterror rate is gathered periodically for

both booked and unbooked UxVs. In order to receive the most recent instance from booked

resources a request is also send to Resource Controller. Resource Controller controls the UxVs

per experiment taking into consideration UxVôs system parameters like remaining battery

lifetime. This information is send back to Monitoring Manager and all the accumulated

information of the resources is forwarded as a response to System Monitoring Service via

Testbed Proxy.

 D4.1 - High Level Design and Specification of RAWFIE Architecture

62

Figure 16 - Sequence Diagram ï Testbed monitoring

4.10 UxV remote control

RAWFIE will also provide to the experimenters the ability to remotely control the vehicles. The

following diagram illustrates a real time experiment performed by an operator using the provided

remote control.

