
 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

1

Road-, Air- and Water-based Future Internet
Experimentation

Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number
and Title

D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

Confidentiality PU Deliverable type1 R
Deliverable File D4.4 Date 08.05.2016

Approval Status2 2nd Reviewer Version 1.0
Contact Person Marcel Heckel Organization Fraunhofer

Phone +49 351 / 4640-645 E-Mail marcel.heckel@ivi.fraunhofer.de

1 Deliverable type: P(Prototype), R (Report), O (Other)
2 Approval Status: WP leader, 1st Reviewer, 2nd Reviewer, Advisory Board

Ref. Ares(2016)2165165 - 09/05/2016

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

2

AUTHORS TABLE
Name Company E-Mail

Marcel Heckel Fraunhofer marcel.heckel@ivi.fraunhofer.de

Vasil Kumanov Epsilon Bulgaria vasil.kumanov@epsilon-bulgaria.com

Kiriakos Georgouleas HAI GEORGOULEAS.Kiriakos@haicorp.com

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

Lionel Blondé HES-SO Lionel.blonde@hesge.ch

Giovanni Tusa IES Solutions g.tusa@iessolutions.eu

Kostas Kolomvatsos UoA kostasks@di.uoa.gr

Miltiadis Kyriakakos UoA miltos@di.uoa.gr

Ricardo Martins MST Rasm@oceanscan-mst.com

Philippe Dallemagne CSEM Philippe.Dallemagne@csem.ch

Elias Kosmatopoulos CERTH kosmatop@iti.gr

REVIEWERS TABLE
Name Company E-Mail

Philippe Dallemagne CSEM Philippe.Dallemagne@csem.ch

Sarantis Paskalis UoA paskalis@di.uoa.gr

Nikolaos Priggouris HAI PRIGGOURIS.Nikolaos@haicorp.com

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

3

DISTRIBUTION
Name / Role Company Level of

confidentiality3
Type of deliverable

ALL PU R

CHANGE HISTORY
Version Date Reason for Change Pages/Sections

Affected
0.1 2015-03-14 Start editing 2nd version of the architecture all

0.2 2015-03-15 Added “Overview of Changes” Overview of Changes

0.3 2015-03-31 Handled reviewer comments for D4.1 all

0.4 2015-04-06 Update Architectural Overview Architectural Overview

0.5 2015-04-08 Excessively updated all texts took from D4.1 all

0.6 2015-04-15 Added contributions from partners mainly Components Overview

0.7 2015-04-21 Added contributions and handle comments from
partners

all

0.8 2015-04-25 Added contributions and handle comments from
partners

all

0.9 2015-04-27 Added contributions and handle comments from
partners

all

0.9 2015-04-29 Added contributions and handle comments from
partners

all

0.10 2015-05-05 Added contributions and handle comments from
partners – ready for first review

all

0.11 2015-05-04 First review all

0.12 2015-05-06 Second and third review all

1.0 2015-05-08 Final version all

3 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium
members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

4

Abstract:
This deliverable describes the second version of the RAWFIE high-level architecture. An overview
of all components and their interaction is given.

Several changes were made on the architecture to reflect the latest developments and also
improvements as a result of several internal discussions..

Keywords:
architecture, components, interactions

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

5

Part II: Table of Contents

Part II: Table of Contents .. 5

List of Figures ... 8

List of Tables ... 9

Part III: Executive Summary .. 11

Part IV: Main Section ... 12

1 Introduction ... 12

1.1 Scope and overview of D4.4 .. 12

1.2 Relation to other deliverables ... 12

2 Overview of changes ... 12

3 Architectural Overview ... 13

3.1 Components integration ... 15

3.2 Real-time constraints and impacts in the architecture .. 15

3.2.1 Rationale ... 15

3.2.2 Approach ... 15

3.2.3 Techniques .. 16

3.2.4 Benchmarking and dimensioning ... 17

3.3 Front-end Tier .. 17

3.4 Middle Tier ... 17

3.5 Data Tier ... 18

3.6 SFA interface and service .. 19

3.7 Testbed Tier.. 19

3.7.1 Common Testbed Interface ... 19

3.7.2 Constraints for testbed integration .. 20

3.7.3 Constraints for UxV integration.. 21

3.8 Message Bus ... 21

4 Components Overview .. 23

4.1 Front end tier .. 24

4.1.1 Web Portal .. 24

4.1.2 Wiki Tool .. 24

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

6

4.1.3 Resource Explorer Tool .. 24

4.1.4 Booking Tool .. 25

4.1.5 Experiment Authoring Tool .. 26

4.1.6 Experiment Monitoring Tool .. 27

4.1.7 System Monitoring Tool ... 27

4.1.8 UxV Navigation Tool ... 27

4.1.9 Visualisation Tool ... 28

4.1.10 Data Analysis Tool ... 29

4.2 Middle Tier ... 30

4.2.1 EDL Compiler & Validator .. 30

4.2.2 Experiment Validation Service ... 31

4.2.3 Users & Rights Service ... 32

4.2.4 Booking Service .. 32

4.2.5 Launching Service .. 33

4.2.6 Experiment Controlle .. 34

4.2.7 Data Analysis Engine .. 35

4.2.8 System Monitoring Service... 36

4.2.9 Testbeds Directory Service ... 37

4.2.10 Accounting Service ... 38

4.2.11 Visualisation Engine ... 38

4.2.12 Message Bus ... 39

4.3 Data tier .. 39

4.3.1 Master Data Repository .. 39

4.3.2 Users & Rights Repository ... 40

4.3.3 Measurements Repository ... 40

4.3.4 Analysis Results Repository ... 41

4.4 Testbed tier ... 41

4.4.1 Testbed Manager ... 41

4.4.2 Aggregate Manager ... 42

4.4.3 Monitoring Manager ... 42

4.4.4 Network Controller ... 43

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

7

4.4.5 Resource Controller .. 44

4.4.6 UxV node .. 45

4.4.7 UxV - Network communication.. 47

4.4.8 UxV – Sensors & Localization ... 47

4.4.9 UxV – On board storage ... 48

4.4.10 UxV – On board processing .. 48

4.4.11 UxV – Device management .. 48

5 Requirement mapping.. 49

Part V: Annex ... 51

Annex A Relevant technologies ... 51

A.1 HDFS .. 51

A.2 SFA APIs ... 52

A.2.1 Aggregate Manager API ... 52

A.2.2 Registry API.. 54

Annex B Abbreviations.. 54

Annex C Glossary .. 57

References ... 64

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

8

List of Figures

Figure 1 – RAWFIE architecture .. 14

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

9

List of Tables

Table 1: Template for components’ description ... 23
Table 2: Web Portal .. 24
Table 3: Wiki Toll ... 24
Table 4: Resource Explorer Tool .. 25
Table 5: Booking Tool .. 25
Table 6: Experiment Authoring Too ... 26
Table 7: Experiment Monitoring Tool .. 27
Table 8: System Monitoring Tool ... 27
Table 9: UxV Navigation Tool ... 28
Table 10: Visualization Tool .. 29
Table 11: Data Analysis Tool ... 30
Table 12: EDL Compiler & Validator .. 31
Table 13: Experiment Validation Service ... 32
Table 14: Users & Rights Service ... 32
Table 15: Booking Service.. 33
Table 16: Launching Service .. 34
Table 17: Experiment Controller .. 35
Table 18: Data Analysis Engine ... 36
Table 19: System Monitoring Service .. 37
Table 20: Testbeds Directory Service ... 38
Table 21: Accounting Service ... 38
Table 22: Visualisation Engine ... 39
Table 23: Message Bus ... 39
Table 24: Master Data Repository .. 40
Table 25: Users & Rights Repository ... 40
Table 26: Measurements Repository .. 41
Table 27: Analysis Results Repository ... 41
Table 28: Testbed Manager .. 42
Table 29: Monitoring Manager ... 43
Table 30: Network Controller ... 43
Table 31: Resource Controller .. 45
Table 32: UxV node .. 46
Table 33: UxV - Network communication ... 47
Table 34: UxV – Sensors & Localization ... 47
Table 35: UxV – On board storage ... 48
Table 36: UxV – On board processing ... 48
Table 37: UxV – Device management .. 49
Table 38: GENI Aggregate Manager API Version 2 .. 54
Table 39: Registry API ... 54

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

10

Table 40: Common abbreviations ... 57
Table 41: Notation .. 57

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

11

Part III: Executive Summary

This deliverable describes the planned high-level architecture of RAWFIE. It is the second
version of this deliverable

Initially, a general overview of the architecture is given, describing the general component
integration, the four abstraction tiers (front-end, middle, data, testbeds), the SFA compatibility
and the used MOM.

Then, each component is described and its relation to other components are listed.

Finally a requirement mapping for all general requirements of D3.2 is done.

The state of the art analysis of D4.1 is still valid and not repeated in the deliverable. However,
some additional information on certain technologies (that complement the state of the art) are
describe in an annex.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

12

Part IV: Main Section

1 Introduction

1.1 Scope and overview of D4.4
D4.4 updates the first version of the architecture from D4.1. It reflects all the necessary changes
that have been done or need to be done based on the experience of the first implementation
period.

The sections “Architectures Overview” and “Component Overview” of D4.1 are replaced with
updated information in the present deliverable. The section “State of the art” of D4.1 is still valid
and will not be repeated, but is extended with the introduction of additional relevant technologies
(see Annex A). Section “Potential use cases and sequence diagrams” is not provided anymore,
since updated sequence diagrams, taking into account use cases and workflows deriving from the
new version of the requirements (see D3.2), will be included in D4.5.

1.2 Relation to other deliverables
D4.4 is an update of D4.1 so it will share many of the contents with it.

A detailed updated requirement analysis was given in D3.2. Using these updated requirements
(which also reflect the experiences of the first implementation period) the architectural definition
was updated.

D4.5 will provide updated detailed components descriptions. Therefore, this deliverable aims at
describing the components and their interfaces at a high level.

D4.6 will provide information on verification and validation plans and scenarios for the
architecture.

D4.7 will then finalize the architecture of RAWFIE (3rd version).

2 Overview of changes
This chapter shortly summarises the most important changes made in comparison to D4.1:

• “State Of The Art” is removed as the State Of The Art of D4.1 is still valid.
o Newly introduced relevant technologies are described in Annex A in this

deliverable.
• Sequence diagrams has been moved and updated only into D4.5.
• Architectural changes are reflected in the following parts:

o Chapter “Architectural Overview” was completely revised.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

13

o The architecture diagram provides further details and was adapted to reflect
structural changes.

o The SFA interface was added
o Testbed now have to implement a Common Testbed Interface.
o After long internal discussion the Testbed Proxy was removed as part of the

RAWFIE architecture (testbeds may still have some internal proxies to restrict
internet access). The securing of communication will be done using the Kafka
message bus. It supports encryption and authentication using SSL (client and
server certificates) and authorizations can be defined via ACLs [16].

o Components added/changed:
 A wiki (Wiki Tool) was added, to fulfil the need for documentation and

manuals
 The Accounting Service was added. Its main purpose is, based on usage

statistics gathered for each RAWFIE service, to allow the introduction of
appropriate charging schemas (especially at the later stages of the project)
for the use of the platform, its services and the UxV resources.

 Several repositories (Testbeds & Resources Repository, Experiments &
EDL Repository, Bookings Repository, Status Repository) were fused into
the Master Data Repository. These data sets will only be small to medium
sized and have relational dependencies.

 The Measurements repository is now specialised for the big data sets that
will very likely be managed.

 The Results repository uses a database specialized for data analysis.
• Components' descriptions have been updated. Changes are directly noted in the last line

of the respective component table
• The requirement mapping was reduced to include only the “general” requirements from

D3.2. Component specific requirements will be handled in D4.5.
o Additionally, for each mentioned requirement it is described, how it is addressed.

• Aberrations where moved to the annex and a glossary was added.

3 Architectural Overview
This chapter gives an overview of the architecture and the various components in each tier.
Figure 1 shows an overview of the architecture: it provides updates and enhancements to the one
presented in the D4.1, being the result of the continuous activities of the consortium for the
refinement of the functional requirements. It also takes into consideration the outcomes of the
first prototype implementation (see WP5). The main design principles are described in the
following sub-sections.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

14

User /
Experimenter

USV / AUV UGV UAV

Booking tool

EDL Compiler
& Validator

Experiment
Validation

Service

UxV Navigation
tool

On-Board
 storage

SensorS &
Localization

Users & Rights
Service

Booking
Service

Web Portal

Resource
Explorer tool

Monitoring
tool Visualization

tool Data analysis
tool

Experiment
Controller

Launching
Service

Visualization
engine

Data analysis
engine

System
Monitoring

Service

On-board
processing

Network
 Communication

visual/graphical
editor for the EDL

textual editor
for EDL

Manual
Launching

Message Bus (payload:JSON or Avro)

HTML/REST, AJAX, WebSockets

JDBC,
LDAP,
etc.

Resource
Controler

Network
Controler

Device
management

Resource
Controler

Network
Controler

Monitoring Manager

Testbed Manager

Resource
Controler

Network
Controler

Testbeds
Directory
Service

SFA
Service

SFA
interface

Wiki
tool

Accounting
Service

HFS/HBase

Measurements

PostgreSQL

Master Data

OpenDJ

Users & Rights

Whisper

Analysis Results

Common Testbed Interface

Lo
ca

ll
M

es
sa

ge
 B

us

M
es

sa
ge

 B
us

Messaging Bridge SFA Aggregation Manager

Local DB

Monitoring Manager

Testbed Manager

SFA Aggregation Manager

Local DB

Monitoring Manager

Testbed Manager

SFA Aggregation Manager

Local DB

Sc
he

m
a

Re
gi

st
ry

Figure 1 – RAWFIE architecture

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

15

3.1 Components integration
RAWFIE follows the Service Oriented Architecture [1] paradigm: all components provide
clearly defined interfaces, so that they can be easily accessed by other components, and their
business logic can be easily updated, with new functionalities without affecting the interfacing
with other components. Interacting with them is made possible by the use of remote service
control protocols such as Representational State Transfer (REST) resource invocation style or the
or the Avro RPC [3], which are based on the popular HyperText Transfer Protocol (HTTP).
These application protocols are relying on any communication system that supports HTTP, such
as the Internet protocol stack (aka. IP or TCP/IP).

Additionally, a message-oriented middleware (via a Message Bus) is used where suitable, using
a convenient communication model providing distribution, replication, reliability, availability,
redundancy, backup, consistency, and services across distributed heterogeneous systems. The
Message Bus communication system interconnects components in the same tier, as well as
components located in different tiers (e.g. Middle Tier and Testbed Tier). It can be used for
asynchronous notifications and asynchronous method calls / response handling. As such, it is
used for transmitting measurements that are routed from producers (e.g. UxVs) to the consumers
pertaining to the Middle Tier (e.g. Experiment Monitoring, Visualisation) as well as for
information that generally addresses multiple components. See also section 3.8 for more
information of the communication through the message bus.

Chapter 4 will give more information about the components highlighted in Figure 1. A more
detailed up to date description of interfaces and interactions between the various components
will follow in D4.5.

3.2 Real-time constraints and impacts in the architecture

3.2.1 Rationale

Real time constraints for the communication between Middle Tier and Testbed components, and
between Testbed components, may depend on the type of experiment as well as on the type of
devices involved. Navigation of UxVs may require low latency, in order to ensure proper control
and, as a consequence, safety of the devices themselves and their environment, including people.

3.2.2 Approach

Dealing with highly dynamic vehicles, such as aerial vehicles or drones (UAVs), implies
providing fast response time to meet their timing requirements. Dealing with less dynamic
vehicles such as UGV or maritime vehicles implies providing more relaxed response times.

However, in all cases, there are operational boundaries in terms of time, be they short or long,
that must be dealt with by the operational entities and stakeholders (the drone itself, the
experimenter, the resource manager and possibly many others). The consortium will identify and

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

16

elaborate on time constraints and real time requirements for several types of devices that may be
involved in the RAWFIE experiments, with the help of owners/providers of UxVs, first those
pertaining to the consortium, then those with new devices that will join the RAWFIE project in
the context of the Open Calls. The consortium will also evaluate how these constraints may
affect the RAWFIE architecture and the chosen technologies in the second iteration.

It is therefore proposed to allow the RAWFIE system to identify and specify the time constraints,
which will be used to instruct the system and its components about their characteristics so that
the system can

1) try to meet the constraints,
2) check if the constraints are met,
3) take appropriate measures in case they are not met.

These activities can be done at any level in the system (in all tiers, in components, at system-
level, in testbeds, in proxies, in UxV, etc.)

3.2.3 Techniques

In a system like RAWFIE, dealing with latency and other real-time requirements implies
checking for the properties of the components of the system and their behaviour, independently
or once integrated as a system. The components must be checked for the support for real-time
constraints, i.e. the possibility to specify these constraints in the description and the
parametrisation of the components and then to check if these constraints are met by the
components once they are running in an integrated system. Of course the same applies at the
system level and it is often difficult to separate these activities (thus it makes difficult to separate
what should be in D4.4 and D4.5).

Constraints identification and specification. Timing requirements can be extracted from
several sources, such as regulation and local recommendations, from technical notes issued by
UxV manufacturers, conclusions given by previous similar experiments and other application
requirements. For example, the UxV manufacturer will require a round trip time of n seconds;
the regulations may require to be able to limit the deviation of a trajectory or path to x meters,
which translates into a control period given by function f(x, v, w, …), which is a formula, taking
into account the speed, weight and other variables; other deployments of UxV in a similar setup
may have shown that the delay between issueing a command from the control centre to the UxV
shall be at most y seconds, where y can span from 0.1 to hundreds. Etc.

The specification of time constraints should include the corrective action (that corresponds to the
fallback scenario) to be performed in case the constraint is not met, e.g. activate emergency
mode or return to a safe location, etc.

Constraints specification. All the above constraints must be translated into durations that will
be checked by the appropriate entities in the operational system: for example the visualisation

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

17

tools needs to be updated with the location of a UxV every hour, if not, then a question mark
should be displayed in red at the latest know position. The corresponding pieces of code should
be created in the EDL editor (constraint and fallback scenario).

Constraints verification. The verification of the constraints is done by the entities for which
these constraints have been specified in the description of the entity, using the EDL. The
implementation of the verification is left to the developer of the entity. A possible yet simplistic
way is to have a timer dedicated to the constraint, that is started on the initial conditions (usually
after a system reset) and reset when specific conditions are met; if these conditions are not met,
then the routine associated to the elapsed timer is executed.

3.2.4 Benchmarking and dimensioning

Benchmarking the software on reference platforms will give indications for the dimensioning of
the RAWFIE system so that, in similar conditions, it can meet the time constraints for most of
the experimentation execution.

Even though benchmarking and the knowledge of performance indicators allows for such
dimensioning, it shall not prevent the insertion of specific mechanisms for checking that the
constraints are met and defining the fall-back scenarios in the experiments.

3.3 Front-end Tier
A web based GUI is provided that enables the user to interact with the RAWFIE system. Most of
the available frontend tools are integrated into a common web app framework, with some third
party web applications accessible via web links.

The aim of the frontend tier is to provide centralised access to a single RAWFIE web portal that
integrates all the functionalities available for the experimenters.

It communicates with the middle tier services via commonly used web technologies (SOAP,
HTTP/REST, AJAX, and Web Sockets). Some server side back-ends of the tools may also
directly access the Data Tier via repository specific protocols (i.e. JDBC).

3.4 Middle Tier
The Middle Tier is made of a collection of services that provide several management and
processing functionalities. These services implement the core functionality of the RAWFIE
platform. Middle Tier entities will support deployment in cloud environments.

The internal communication between the different services uses REST and Avro RPC [3]
interfaces for direct and Request/Response based communication, as well as the Message Bus for
asynchronous notifications. The communication to the Data Tier uses the application specific
protocols, like JDBC, LDAP, as well as Java-HDFS-API or WebHDFS REST API [13] for

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

18

accessing data stored in the Hadoop Distributed File System ([14] and A.1). The communication
with the Testbed Tier is mainly done via the Message Bus.

Every RAWFIE component described in Chapter 4 uses the above communication interfaces for
the exchanges with the other components. The component descriptions mention these exchanges
as inputs and outputs.

3.5 Data Tier
The Data Tier consists of several repositories and databases. There is no direct interconnection
between the components in this tier (relation will be indirectly via Middle Tier components).

The different repositories are:

- Master Data Repository, to contain all the management data sets (experiments, EDL
scripts, bookings, testbeds and resources, status information of testbeds and their
resources, and so on) of RAWFIE. It will only be small to medium sized and have
relational dependencies. This is the main reason for using a relational database [5] for
storing this data. PostgreSQL [6] with PostGIS extension was chosen for the
implementation, as it is well supported, open source and stable, and to be able to easily
handle geo-referenced data

- Measurements Repository, that will use a big data storage system for storing the large
number of measurements that will be coming from the sensors on board of the UxVs
during the experiments. The popular big data solution “Hadoop Distributed File System”
([14] and A.1) is one of the potential solutions for this purpose, however the specific
technological choice will be detailed in further WP4 deliverables and in WP5. In
addition, a NoSQL solution is expected to be adopted in the 2nd implementation iteration
to better manage the data sets. Currently HBase (running on top of HDFS) has been
identified for this purpose.

- Analysis Results Repository, uses a special database for performing the Data Analytics
job over the results of the experiments. The Graphite [17] data analysis framework will
used with it database called Whisper [18]

- Users & Rights Repository, uses a LDAP [7] repository, as LDAP is a de facto standard
for user management. It stores all user related data (name, organisation, address,
password) and group memberships (roles based access control). The selected
implementation is OpenDJ [8].

Except for the Analysis Results Repository, all used repository systems (PostgreSQL [9], HDFS
[14], OpenDJ [10]) support replication, hence they do provide fault tolerance. In case of data loss
in the Analysis Results Repository, they can be recomputed using data stored in the
Measurements Repository

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

19

3.6 SFA interface and service
To provide an interface compatible to other FIRE facilities, an SFA Service that implements the
SFA interface will be developed. This will allow the experimenters to access parts of the
RAWFIE systems also via SFA clients. SFA service in the middle-tier will act as a parser of the
RAWFIE data structure (resource specification) that will be used. This resource specification
will be used by the SFA Aggregate Manager to list and describe the RAWFIE testbed local
resources (either to advertise all resources or reserved resources) and by the SFA clients to
describe the desired resources. SFA implements the Registry API and Aggregate Manager API.
The SFA Registry can be part of the SFA service module and should run on top of a database in
order to store any related registration information. In every testbed, an Aggregate Manager API
should be implemented based on the Geni Aggregate Managers [12] in order to provide to SFA
clients all the testbed information. Both APIs are describe in detail in A.2.

3.7 Testbed Tier
This testbed tier encompasses the infrastructure (both in terms of software and hardware
elements) that needs to be deployed to the Testbeds facilities in order to support the execution
and monitoring of experiments as well as the data exchanged with the middle tier and the UxVs.
The UxV nodes are considered as part of the testbed tier. The testbed tier maintains a local
database for storing information needed for the testbed and its experiments and does not directly
interact with the RAWFIE data tier.

The different kinds of Testbeds (Maritime, Vehicular and Aerial) share a common testbed
interface that abstracts their particularities and exposes a unified access to and from the other
tiers.

3.7.1 Common Testbed Interface

The Testbeds themselves may be very heterogeneous due to different constraints and
characteristics of the selected area/region. Each testbed however shall adhere to a Common
Testbed Interface that includes:

• message bus clients, that is, publishers and consumers of the Message Bus (software
perspective),

• high bandwidth connection capabilities with sufficient security for the communication
with the Middle Tier (networking perspective).

The messages exchanged between Testbed Tier and the Middle Tier includes:

• Messages related to the control of an experiment (start, stop, cancel, etc.),
• Messages related to sending of status and health information for each testbed,
• Messages related to experiment data/measurements collected during an experiment that

need to be analysed by the platform data analytics engine,

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

20

• Location information of the various devices that can be used for coordination,
monitoring and visualization purposes.

More details on the exact Messages/Commands that are supported between the Testbed Tier and
the Middle Tier are provided in WP5 deliverables. All these messages refer to the actual
application specific interactions imposed by the type of experiments that need to be supported by
RAWFIE. It does not address issues related to resource discovery and reservations that are
expected to be based on the SFA standard.

It must be also noted here that the testbed components implemented in RAWFIE comprise just a
reference implementation that may be adopted by Testbed providers. Testbeds facilities of core
RAWFIE project partners will use these components and defined structure as much as possible.
However, external testbeds, including the ones that will be integrated through the Open Calls,
will decide on their own whether to use already software components implemented by the
project, or implement their own.

3.7.2 Constraints for testbed integration

This section summarizes the general needs and constraints that a testbed facility must fulfil in
order to be able to connect and operate within the premises of the RAWFIE federation. These do
not only adhere to the envisaged testbed architecture but are also related to administrative and
logistics aspects. The integration of a new testbed site in RAWFIE implies that the candidate
testbed shall:

1. implement the Common Testbed Interface that mandates asynchronous message bus
communication in all types of interactions that relate to RAWFIE specific experiments’
handling and data gathering (as described in section 0)

2. implement the required SFA Aggregate Manager Interface prescribed for FIRE
compatible testbeds for what has to do with resource discovery (as described in section
3.6)

Besides that, each testbed should provide additional infrastructure/resources that include at least:

1. Dedicated computational resources for executing the UxVs control commands and
handling sensor data messages from multiple devices with a reasonable rate
(testbed/UxV specific),

2. A high quality internet connection, as the testbed needs a connection to the RAWFIE
Cloud platform,

3. Appropriate maintenance area (usually protected) for storing UxV devices that are not in
the field,

4. Monitoring infrastructure that provides timely information on the exact location of all
UxV devices involved in experiments. The monitoring should be independent of the
positioning info that UxVs may provide,

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

21

5. Power supply that guarantees uninterrupted operation during experiments execution for
the testbed’s ground components,

6. Availability of personnel during testbed operational hours (needed for safety reasons and
for transporting devices from/to the testing field).

A general requirement analysis is given in D3.2

3.7.3 Constraints for UxV integration

This section lists the main architectural constraints regarding the UxV integration. A general
requirement analysis is given in D3.2.

The hereafter-described constraints shall be provided directly by the on-board software suite of
the UxV or, optionally, by a proxy translating UxV specific protocols and network interfaces to
the RAWFIE UxV Protocol

1. UxVs shall be equipped with network communication devices,
2. UxVs shall publish/subscribe to information to the RAWFIE message bus,
3. UxVs shall record and transmit sensor data,
4. UxVs shall be able to store sensor data internally (for later transmission),
5. UxVs shall periodically publish position, orientation, velocity,
6. UxVs shall periodically publish on-board storage usage, fuel usage, CPU usage,
7. UxVs shall be capable of processing sensor data in order to summarize large sensor data-

sets,
8. UxVs shall receive and act upon RAWFIE command messages to control the UxV

remotely (e.g. from the Front-end Tier).

3.8 Message Bus
The Message Bus is used for two main purposes: for asynchronous communication inside the
Middle Tier and for all data exchange between the Middle Tier and the Testbed Tier.

As reported in D5.1, for the implementation of the RAWFIE prototype in the first iteration,
Apache Kafka [4] has been chosen for implementing the message bus, by taking into
consideration the following aspects / advantages:

• capability to automatically spread data and, consequently, workload across a cluster of
machines, thus allowing scalability in a cloud environment,

• capability to automatically replicate data over multiple servers (brokers), thus ensuring
fault tolerance,

• built-in persistence mechanisms, which allows the system to easily deal with issues like
the temporary overload of the network connection, or temporary disconnections

o a Kafka broker stores all messages received in a ring buffer for a configurable
amount of hours (until disk is full or the max log size is reached). So messages

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

22

could also be read hours later. Producers could also be implemented in a way, that
they buffer messages locally, until they can be sent to a Kafka broker.

• high throughput, in terms of messages per seconds.
• build in security mechanisms that can be enabled during message exchange

As serialization format of the messages on the bus, Apache Avro [2] war chosen (a preformat
binary format).

An important parameter to consider when analysing the different communication patterns in
RAWFIE is the latency (see also Chapter 3.2), defined as the amount of time a message takes to
reach the receiver/s, after it has been sent by the publisher. The latency of the message bus has a
great impact on the timeliness of the RAWFIE operations, since it may induce delays and jitter.

Different aspects of the system architecture may affect the latency in the communication, apart
from the chosen software technology itself: these aspects include the communication network,
too.

Performance tests for specific RAWFIE use case scenarios are ongoing and will be presented in
WP6 deliverables. Since the tests results can also affect the final technological choices for the
communication between UxVs and other testbed components in the 2nd implementation iteration,
the following configuration and implementation optimisations are currently used or envisaged,
for reducing the latency when using a publish/subscribe communication pattern, and specifically
Apache Kafka:

• use of different partitions (a partition in Apache Kafka is the equivalent of a message
queue for other messaging systems, which can be spread across different servers for
scalability) for the different UxVs: this ensures that the messages of the various UxVs do
not intermix, provides much sorter message bus queues dedicated to a particular UxV and
much faster response times,

• use of producers with small batch size or small linger time: messages are sent (almost)
immediately after produced (without waiting for other messages to be sent in a batch),

• small fetch times and small fetch sizes of consumers: messages are read (almost)
immediately after being available at the broker (without waiting for other messages to be
read in a batch),

• configure different topics for messages with different priorities (e.g. for critical
commands, if any, and for simple sensors measurements). This way, the consumers can
also be customised so as to consume the messages from the “higher priority” topics first,

• using of asynchronous messages producers, i.e. producers will not have to wait the
response from the broker. The synchronous response may be then replaced by a callback
to check for communication errors.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

23

As a further optimisation, a local Message Bus (message broker) installation could also be
envisaged within each Testbed: the internal communication between e.g. the Resource Controller
and the UxVs will be performed in a local, controlled network environment, thus reducing the
impact of the network in the latency of the communication. The overall workload in the message
bus will be reduced, and the local message bus system can be adjusted to the needs of the
Testbed itself. Testbed components may access both message bus systems or only one. For
component that only access the local message bus but have to communicate with the Middle Tier
(deployed in the Cloud) a Messaging Bridge[19] may be used to connect both systems. It will
filter and transform messages appropriately.

4 Components Overview
This chapter provides a high level description of the components and the interactions between
them. Deliverable D4.5 will give a more detailed description of the components and interfaces.

Component table

In the next sections, components will be described by using tables, according to the following
template.

Component Name of the component or subsystem
Responsible partner The main responsible partner. Other may also be involved (may be

added in parenthesis), but this partner has to coordinate the activities for
this component.

Parent Component None
Description A short description of the component

Provided
functionalities

List of functionalities and interfaces provides by this component

Relation to other
components

How this component will interact with other components.
Also the (main) data flow should be described in this way:
• Some other component
o IN ← data read from the other component
o OUT → data sent to the other component
o IN/OUT ↔ data read and sent to the other component

Changes Describes short the difference to D4.1, e.g.
• none (no or minor changes)
• new (new component)
• add functionality …
• removed functionality…

Table 1: Template for components’ description

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

24

4.1 Front end tier

4.1.1 Web Portal

Component Web Portal
Responsible partner Fraunhofer
Parent Component None
Description The central user interface that provides access to most of the RAWFIE

tools/services and available documentation.
Provided
functionalities

• Login and access control
• Single sign on for each web tool
• Linkage of all web tools

Relation to other
components

• Provides a single point of access to the various RAWFIE Tools
through a web GUI.

Changes • none
Table 2: Web Portal

4.1.2 Wiki Tool

Component Wiki Tool
Responsible partner Fraunhofer
Parent Component Web Portal
Description Provides documentation and tutorials to the users of the platform.

Provided
functionalities

Contains:
• well-organized and self-contained tutorials and documentation
• read access to all user
• write access only to special users

Relation to other
components

• Other tools may have direct links to the manual in the wiki

Changes • new
Table 3: Wiki Toll

4.1.3 Resource Explorer Tool

Component Resource Explorer Tool
Responsible partner Fraunhofer
Parent Component Web Portal
Description The experimenter can discover and select available testbeds as well as

resources/UxVs inside a testbed with this tool.
Administrators can manage the data.

Provided
functionalities

• Visualize Data from the “Testbed, Resources” directory
• Provide ability to search and select available resources inside a

testbed
• Update/edit/delete data (for administrators)

Relation to other • Testbeds Directory Service (REST/RPC API)

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

25

components o IN/OUT ↔ read and add/update testbed and UxV data
• Booking tool (HTTP redirect)
o OUT → send selected resources

Changes • Editing and updating of testbed and UxV data added
Table 4: Resource Explorer Tool

4.1.4 Booking Tool

Component Booking Tool
Responsible partner HAI
Parent Component Web Portal
Description The Booking tool will provide the appropriate Web UI interface for the

experimenter to discover available resources and reserve them for a
specified period.
The Reservation of resources should be compatible with the SFA
Architecture and the concept of slices allocations employed by SFA
implementations such as myslice.
• The Booking Tool will be responsible for handling only user level

reservations4.
Provided
functionalities

• Visualize the available dates and timeslots for each testbed resources
(i.e. through a calendar like view)

• Enables selection of the preferred date, timeslot(s) in a testbed
• Enables reservetion of UxV resource(s) for specified time interval

(one or more consecutive timeslots)
• Enables modification or removal of existing user/experimenter

selections
• Visualize the status of a reservation (pending/reserved)
• Initial, selections, modifications and removals will be validated by

the Booking Service.
Relation to other
components

• Resource Explorer Tool (HTTP redirect)
o IN → selected resources for booking

• Booking Service (REST/RPC API)
o IN ←load existing bookings
o OUT → new/edited/deleted bookings

• Testbed Directory Service (Resource Explorer Tool) (REST/RPC
API)
o IN ← load selected UxV resources for testbeds

Changes • modification/removal or reservations added
• Visualization of user reservation status added

Table 5: Booking Tool

4 Experiment level reservations are performed indirectly during experiment authoring or scheduling
based on initial user level reservations.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

26

4.1.5 Experiment Authoring Tool

Component Experiment Authoring Tool
Responsible partner UOA
Parent Component Web Portal
Description This component is actually a collection of tools for defining

experiments and authoring EDL scripts through RAWFIE web portal. It
will provide features to handle resource requirements/configuration,
location/topology information, task description etc.

Provided
functionalities

• The supported functionalities are:
• Experiment Definition Language (EDL)
• Textual EDL editor (with syntax highlighting)
• Visual EDL editor (describes script with graphical elements)
• Textual and visual editors synchronization
• Saving EDL scripts
• Versioning of EDL scripts
• Experiment validation
• Manual Experiment launching

Relation to other
components

The authoring tool will be connected with the respective components of
the middle and data tiers (i.e., EDL Compiler and Validator, Experiment
Validation Service, Experiment and EDL Repository, Launching
Service). The use of EDL textual and visual editors will trigger EDL
compiler and experiment validation backend services to perform
syntactic and semantic analysis of the EDL scripts while the
experimenter will have the opportunity to store / retrieve EDL scripts, at
any time, through specific buttons and menus. The authoring tool will
be connected with the launching service for scheduling the experiment
executions. Moreover, this tool will interact with the EDL repository of
the data tier in order to retrieve and/or store EDL scripts.
• EDL Compiler and Validation (HTTP, SOAP)
o IN ← EDL script, errors, warnings
o OUT → EDL script

• Experiment Validation Service (HTTP, SOAP)
o IN ←EDL script, errors, warnings
o OUT → EDL script

• Launching Service (REST/RPC API)
o OUT → Experiment ID

• Experiment and EDL Repository (JDBC)
o IN ← EDL script, experiment data
o OUT → EDL script, experiment data

Changes • Visual editor functionalities: The experimenter can insert waypoints
for each node.

Table 6: Experiment Authoring Too

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

27

4.1.6 Experiment Monitoring Tool

Component Experiment Monitoring Tool
Responsible partner Fraunhofer
Parent Component Web Portal
Description Shows the status of experiments and of the resources used by

experiments.
Provided
functionalities

• Show status of experiments (filtered by user rights)
• Show status of resources (filtered by experiments & user rights)
• Cancel a running experiment

Relation to other
components

• Launching service (REST/RPC API)
o OUT → cancel a running experiment

• Master Data Repository (JDBC)
o IN ← state of experiments

• System Monitoring Service (REST/RPC API)
o IN ← state of resources

Changes • Cancelation of running experiments added
Table 7: Experiment Monitoring Tool

4.1.7 System Monitoring Tool

Component System Monitoring Tool
Responsible partner Fraunhofer
Parent Component Web Portal
Description Shows the status and the readiness of the various RAWFIE services and

testbed
Provided
functionalities

• Show status of RAWFIE system infrastructure (servers, services,
testbeds, UxVs)

• Highlight potential problems
Relation to other
components

• System Monitoring Service (REST/RPC API)
o IN ← state of middle tier infrastructure

Changes • Testbed & UxV monitoring added
Table 8: System Monitoring Tool

4.1.8 UxV Navigation Tool

Component UxV Navigation Tool
Responsible partner CERTH
Parent Component Web Portal
Description This component will provide to the user the ability to (near) real-time

remotely navigate a squad of UxVs. Through a user-friendly interface,
the experimenter will specify the required details of the experiment,
providing information regarding the number of the vehicles, the number
of the units etc.
Navigating an UxV is not an easy task and requires initial instructions
and an extensive training to become proficient. The UxV Navigation

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

28

Tool will provide the ability to non-expert users to remotely guide a
squad of robotic vehicles to perform basic navigation missions such as
waypoint navigation, map construction, area surveillance and path
planning.
The virtual controller will allow the experimenter to guide the vehicles
using a turn based navigation mechanism and to collect data from their
equipped sensors. Through the provided interfaces, users, specify the
next desired location for each unit. In the sequel, these instructions are
transmitted to the “Resource Controller” and sequentially, are
translated, evaluated and delivered to the robots. When all the vehicles
reach their desired position, the UxV Navigation Tool is ready to accept
a new set of instructions.
It is worth noting that the communication between the UxV Navigation
Tool and the Resource Controller, does not need to be real time, as the
execution of the instructions will start right after the whole list of
instructions/commands are provided. On the other side of the spectrum,
the Resource Controller communicates in real time with the UxVs so as
to transmit and receive the given instructions.

Provided
functionalities

• Experiments will have the ability to select the next desired location
for each unit using one of the following interfaces:
o A map of the area will illustrate the current position of each robot.

Simply, by clicking on the map, the users define the next desired
location.

o Users will also have the option to manually navigate the robots by
providing the coordinates of the next chosen position

Relation to other
components

• Resource Control (via Message Bus)
o OUT → transmitting the user’s instructions

Changes • None
Table 9: UxV Navigation Tool

4.1.9 Visualisation Tool

Component Visualisation Tool
Responsible partner EPSILON
Parent Component Web Portal
Description Visualisation of an ongoing experiment as well as visualisation of

experiments that are already finished
Provided
functionalities

• Geospatial data visualisation from available external providers;
• Show/track all moving UxV resources;
• visually connect UxVs and display relevant parameters for each of

them
• Store and load user settings for a specific experiment
• Replay an experiment that is already finished

Relation to other
components

• Visualisation Engine (via websockets)
o IN ← Load experiment settings
o IN ← Get real time data for UxVs and sensors

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

29

o IN ← Get data for experiment replay
o OUT → Store preferred user settings

Changes • Updated the relation to the visualisation engine and the
functionalities and updated the description with more details

Table 10: Visualization Tool

4.1.10 Data Analysis Tool

Component Data Analysis Tool
Responsible partner HES-SO
Parent Component Web Portal
Description The Data Analysis Tool enables the user to browse available data

sources for subject to analytical treatment as well as previous analysis
tasks' outcomes. Through the tool, data analysis learning tasks can then
be initiated and carried out for as long as needed depending on the
nature of the analysis to be performed or the type of the data being
analysed. It namely enables the user to launch jobs on streaming data
which by definition are being performed continuously and never end.
Once the results of a given analytical job are obtained, either
continuously in a streaming scenario or in a batch manner when the
execution is complete and ended, the Data Analysis Tool provides
access to the associated results persistently stored in the Analysis
Results repository. Finally, results coming from streaming analytical
tasks can be displayed in a real time fashion on a dashboard configured
from the Data Analysis Tool coupled with the data storage in use for the
given analysis.

Provided
functionalities

• Visualises past results from the Analysis Results Repository via its
dashboard integration

• Defines and specifies data analytical/learning tasks to be executed on
specific data sources by the Data Analysis Engine

• Requests available schemas from the Schema registry. This is a sub-
component of the message bus. It is the portion that handles version
invariance

• Provides commands to the Data Analysis Engine to launch the
execution of the various analytical task defined beforehand through
the Data Analysis Tool

Relation to other
components

• Message Bus
o IN ← read schemas

• Analysis Results Repository
o IN ← read results (via the Graphite UI from the Result

Repository)
• Data Analysis Engine
o IN ← get analytical job status (via Message Bus)
o OUT → submit commands (via Message Bus)

Changes • Updated the description to be more thorough and include the
elements mentioned in the functionalities section

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

30

• Refined the provided functionalities to be more explicit and sorted
them to fit the order in which they will most likely be used

• There is no change in the relations to other components compared to
the previous iterations of the document.

• Added all the changes triggers by the separation of the Measurements
and Results Repository into two separate entities, the Measurement
Repository and the Analysis Results Repository.

Table 11: Data Analysis Tool

4.2 Middle Tier

4.2.1 EDL Compiler & Validator

Component EDL Compiler & Validator
Responsible partner UOA
Parent Component None
Description The EDL validator will be responsible for performing syntactic and

semantic analysis on the provided EDL scripts. The validation will be
performed on top of the proposed EDL model that will be based on a
specific grammar. The EDL will give the opportunity to developers to
define commands related to the experiments covering issues like spatio-
temporal instructions to the UxVs, communication, control, sensing or
nodes and data management.

Provided
functionalities

Validated EDL scripts created either with the textual or the visual editor
are based on the EDL grammar and a set of pre-defined rules (i.e.,
syntactically, regarding spatial and/or spatiotemporal availability of
selected resources, control). The following list presents the
functionalities offered by the validator:
• It provides syntactic and semantic validation of each experiment

workflow.
• It applies a set of constraints that should be met in order to have a

valid experiment.
• It is capable of applying semantic checking for nodes

communication, spatio-temporal management, sensing and data
management.

• It performs code generation in the appropriate format in order to be
uploaded into the RAWFIE nodes.

Relation to other
components

The validator will be connected with the provided editors as well as
with components available in the data and the middle tier through the
provided inter. The authoring tool will provide input to the validator in
the form of an experiment workflow. The validator will retrieve the
necessary data (e.g., EDL model, constraints, templates) stored in the
data tier and will generate specific code blocks ready to be uploaded in
the available nodes. The output of the validator will be adopted by a
number of components like the Experiment Validation Service (EVS) or
the Launching Service and the Experiment Controller. Moreover, the

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

31

EDL validator will have access to the services provided in the data tier
in order to store or retrieve parts or a whole experiment.
• Experiment Authoring Tool (HTTP, SOAP)
o IN ← EDL script
o OUT → EDL script, errors, warnings

• Master Data Repository (JDBC)
o OUT → EDL script, experiment data

• Experiment Validation Service (HTTP, SOAP)
o OUT → EDL script

• Experiment Controller (REST/RPC API)
o OUT → Experiment data

Changes • none
Table 12: EDL Compiler & Validator

4.2.2 Experiment Validation Service

Component Experiment Validation Service
Responsible partner UOA
Parent Component None
Description The Experiment Validation Service (EVS) will be responsible to

validate every experiment as far as execution issues concern. This
means that the EVS will validate if each experiment can efficiently be
executed in the selected testbed. The aim is to have the RAWFIE
following a pro-active approach through which the framework will be
confident that an experiment will be executed without any problems. A
number of constraints will be defined by experts that should be met
during the experiment execution. Constraints will be related to the
spatio-temporal aspect of the experiments. For instance, the EVS should
check if during the execution of an experiment collisions are avoided
and UxVs will efficiently fulfil their mission. Cross experiments
validation will be performed accompanied by qualitative characteristics
of an experiment. Communication between nodes will be secured as
well as collision avoidance and qualitative control activities.

Provided
functionalities

The EVS aims to secure the qualitative and efficient execution of each
experiment. Validated EDL scripts will be the input to the EVS and the
result will be a set of possible errors that the experimenter should satisfy
before the actual execution of the experiment. The following list
presents the functionalities offered by the EVS:
• It provides semantic validation of each experiment workflow for the

specific testbed.
• It checks the fulfilment of a set of constraints defined by experts for

the specific testbed.
• It is capable of retaining security issues e.g., collision avoidance, and

the qualitative aspects of each experiment. Efficient communications
and control of the UxVs team will be performed in order to increase
the performance of the system.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

32

• It performs cross experiment validation in order to help in
maximizing the performance of RAWFIE framework.

Relation to other
components

The EVS will be combined with the EDL validator receiving the
experiment workflow as input. The EVS will result in a set of errors or
will confirm the efficient execution of an experiment, information that
will be adopted by other middle tier services (e.g., launching service,
experiment control). Moreover, the EVS will have access to the services
provided in the data tier in order to retrieve parts or a whole experiment.
Finally, specific parts of an experiment will be transferred to the testbed
tier and, thus, the EVS will be combined with services available in the
lower tier of the RAWFIE architecture. The following reports on the
connection of the EDL Compiler & Validator with the remaining
components of the RAWFIE architecture:
• EDL Compiler & Validator (HTTP, SOAP)
o IN ← EDL script
o OUT → EDL script, errors, warnings

• Testbeds Directory Service (REST/RPC API)
o IN ← Testbeds information

• Experiments and EDL Repository (JDBC)
o IN ←EDL script, experiment data
o OUT →EDL script, experiment data

• Experiment Authoring Tool (HTTP, SOAP)
o IN ← EDL script
o OUT → EDL script, errors, warnings

Changes • none
Table 13: Experiment Validation Service

4.2.3 Users & Rights Service

Component Users & Rights Service
Responsible partner Fraunhofer
Parent Component None
Description Manages all the users, roles and rights in the system.
Provided
functionalities

• Check the authentication of uses
• Authorization service (check if a user is allowed to do an specific

action)
Relation to other
components

• All components that need to check users authentication and
authorizations

• Users & Rights Repository (LDAP interface)
o IN/OUT ↔ Read and update user and rights data

Changes • none
Table 14: Users & Rights Service

4.2.4 Booking Service

Component Booking Service

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

33

Responsible partner HAI
Parent Component None
Description The Booking Service manages bookings of resources by registering data

to appropriate database tables and possibly providing notification
mechanisms to the experiments
The Booking Service is responsible for processing and validating all
reservations requests at user or/and experiment level initiated by the
platform.

Provided
functionalities

• Validates all reservations requests (add, edit, delete) based on a set of
predefined constraints/checks

• Coordinates reservations of testbed resources among experimenters
• Provides Notification mechanisms (reminder for experiments) for the

status of their reservation
• Ensures fairness in resource bookings (part of validation process)
• Interacts with the persistence store (Relational DB Tables)

Relation to other
components

• Booking Tool (REST/RPC API)
o IN ← new/edited/deleted bookings
o OUT → Changed status of pending reservation
o OUT → existing Booking info

• Master Data Repository (JDBC)
o IN/OUT ↔ Execution of SQL queries for retrieving or updating

reservation related entities in the DB
• Launching Service, Experiment Authoring Tool (REST/RPC API)
o OUT → existing user level reservation info for an experiment

Changes • None or minor changes
Table 15: Booking Service

4.2.5 Launching Service

Component Launching Service
Responsible partner HAI
Parent Component None
Description The Launching Service is responsible for handling requests for starting

or cancellation of experiments. Regarding launching functionality it will
support:

(a) Short-term launching (manual launching): The LS will give
the opportunity to experimenters to directly initiate pre-defined
and pre-approved experiments stored in the RAWFIE system.
This type of launching will involve user interaction following
the authoring and validation of an experiment and is expected to
be used mainly for debugging purposes5.

(b) Long-term launching (scheduled launching): The LS will

5 this functionality will be available if the corresponding testbed is already configured (i.e., UxVs are in place after
a user level reservation has taken place and the necessary code is uploaded to nodes).

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

34

maintain an internal scheduler which will be triggered and
initiate experiment requests according to the available
experiment level reservations.

It should be noted, that the LS will execute only authorized and
approved experiments based on spatio-temporal constraints that will be
validated just before launching.
In both cases the LS will require as input an experiment Identifier and
will initiate a proper StartExperiment request containing a unique
execution Identifier or return proper error feedback.

Provided
functionalities

• The LS will provide the following functionalities:
• Enables direct initiation of an experiment from the UI.
• Enables scheduling of experiments at a future time based on

experiment level reservations.
• Enables cancellation of running or scheduled experiments

Relation to other
components

The LS will interact with a number of components in the middle, data
and testbed tiers. It will receive/retrieve instructions from experimenters
through real time interaction or through bookings. Accordingly, it will
send instructions to the testbed tier in order to secure the execution of an
experiment.
• Experiment Authoring Tool (REST/RPC API)
o IN ← experiment to be launched

• Experiment Monitoring Tool (REST/RPC API)
o IN ← experiment to be cancelled

• Experiment Validation Service (REST/RPC API)
o IN/OUT ↔ validation feedback for provided experiment

• Experiment Controller (Message Bus)
o OUT → Start or Cancel Experiment request

• Master Data Repository (JDBC)
o IN/OUT ↔ Execution of SQL queries for retrieving or updating

experiment and reservation related entities in DB
Changes • Cancellation of experiments added

• Interaction with Experiment Validation Service added
• Interaction with TestbedProxy removed
• Interaction with Experiment controller achieved via the Message Bus

Table 16: Launching Service

4.2.6 Experiment Controlle

Component Experiment Controller
Responsible partner CERTH
Parent Component None
Description The Experiment Controller (EC) is a service placed in the Middle tier

and is responsible to monitor the smooth execution of each experiment.
The main task of the experiment controller is the monitoring of the
experiment execution while acting as ‘broker’ between the experimenter
and the resources.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

35

The EC will provide capabilities to support ‘complex’ experiments
possibly involving multiple testbeds as well as to support the manual
override of specific instructions to the resources while the experiment is
running. The EC will identify if the experiment runs smoothly and will
inform the upper layer in order to present the necessary information to
the experimenter. In addition, the EC will control the data (raw or
processed) sent back by the nodes. Hence, the EC, among others, will
have access in the Data tier in order to be capable of retrieving the
necessary data. The use of the EC in the middle tier gives RAWFIE the
opportunity to include more intelligence in the functionalities provided
related to the execution of the experiments and the level description to
waypoints (e.g., implement patterns of vehicle movement like
expanding ring). For instance, the system could have a view on the
correct execution of the experiment workflow, to combine multiple
UxV / Testbed types in the same experiment or to be able to monitor the
execution of more complex scenarios.

Provided
functionalities

• The EC acts as ‘broker’ between the experimenter and the resources.
• The EC monitors the course of actions during the experiments

execution and informs the appropriate services in the Front-end layer.
• It forwards instructions from the experimenter to the resources.

Relation to other
components

• Launching Service (Message Bus)
o IN ← experiment to be launched

• Resource Controller (Message Bus)
o IN/OUT ↔ Experiment Details, Start or Cancel Experiment

request
• System Monitoring Tool (Message Bus)
• OUT → Experiment Status Experiment Monitoring Tool (Message

Bus)
o OUT → Measurements and Experiment Details (Position of the

vehicles)
Changes • None

Table 17: Experiment Controller

4.2.7 Data Analysis Engine

Component Data Analysis Engine
Responsible partner HES-SO
Parent Component None
Description The Data Analysis Engine enables the execution of data processing jobs

by sending requests to a processing engine (either stream processing
engine, batch or micro-batch) which will perform the computations
specified when the analytical task was defined through the Data
Analysis Tool to be transmitted to the processing engine for execution.
The Data Analysis Engine contains two major subcomponents:

• Compute Engine: the implementation that distributes data
analysis computations (e.g. BLAS operations, etc.) over nodes in

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

36

a cluster, built using the Apache Spark framework.
• Frontend: the portion that, based on the information given by the

user through the Data Analysis Tool, relays the associated data
to the compute engine that will perform the desired analytics.
The frontend component of the Data Analysis Engine uses the
message bus schema registry in order to filter what will be
subject to computation.

Provided
functionalities

• Requests the execution of a stream/batch processing job
• Stores the results of the analysis in the Results Repository (Whisper).

Relation to other
components

• Data Analysis Tool (via Message Bus)
o IN ← receive analytical task execution command
o OUT → send analytical task status

• UxV - Sensor & Localisation (via Message Bus)
o IN ← read data from UxV direcly through the message bus

(streaming)
• Measurements Repository
o IN ← read measurements (batch)

• Analysis Results Repository
o OUT → send results

Changes • Updated the description to involve explicitly the component coupled
with the engine, the Data Analysis Tool, and exhibit the nature of the
relation.

• Added all the changes triggers by the separation of the Measurements
and Results Repository into two separate entities, the Measurement
Repository and the Analysis Results Repository.

Table 18: Data Analysis Engine

4.2.8 System Monitoring Service

Component System Monitoring Service
Responsible partner Fraunhofer
Parent Component None
Description Checks readiness of main components and ensure that all critical

software modules will perform at optimum levels.
Predefined notification are triggered whenever the corresponding
conditions are met, or whenever thresholds are reached

Provided
functionalities

• Check the performance, utilizing Key Performance Indicators (KPI)
• Send notifications (e.g. via email) when triggers are reached
• Capture alarms caused by malfunction or underperformance of the

equipment.
Relation to other
components

• all middle tier and testbed components (Message Bus or REST/RPC
API)
o IN ← status and performance values

• System Monitoring Tool (REST/RPC API)
o OUT → collected status and performance values

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

37

• some messaging system (e.g. email or SMS)
o OUT → send notifications to user

Changes • monitoring of testbed components added
• concept of general actions removed

Table 19: System Monitoring Service

4.2.9 Testbeds Directory Service

Component Testbeds Directory Service
Responsible partner IES
Parent Component None
Description Represents a service of the middleware tier where all the integrated

testbeds and resources accessible from the federated facilities are listed,
belonging to the RAWFIE federation.
This service will be the software interface for most of the information
available / that will be stored in the Master Data Repository. This
includes information relevant to the testbeds (name, location,
description, type of resources supported, status of testbed and related
resources, etc.) and associated resources (name, location, description,
type, status) as well as information on the capabilities in terms of
available technologies and associated tests of a particular resource

Provided
functionalities

• Provides a REST API. This API allows other components to get
access to the information contained in the corresponding repository
(Master Data Repository), by realising traditional CRUD (Create,
Read, Update, Delete) operations

• Provides the pointers to the different testbeds belonging to the
RAWFIE federation

• In particular, using the provided software API it will be possible to:
o Register / Unregister new testbeds in the RAWFIE platform

(Create / Delete)
o Register / Unregister resources to specific testbeds of the

RAWFIE platform (Create / Delete)
o Look at the available testbeds list, description, available resources,

and at their status, e.g. free, booked, in use, and so on (Read)
o Look at the available resources within a given testbed, their

description, characteristics, capabilities and their status, e.g. free,
booked, in use, not operational, and so on (Read)

o Edit information on testbeds and resources (Update)
o Look at the testbeds and resources capabilities in terms of

available technologies and tests (Read)
o Get information on testbeds and resources according to pre-

defined filters, e.g. type of UxVs available (Read)
Relation to other
components

• Resource Explorer Tool (REST/RPC API)
o IN/OUT ↔ read and add/update testbed and UxV data, via a

REST interface
• Master Data Repository (JDBC)

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

38

o IN/OUT ↔ Perform SQL queries and updates on Testbeds and
Resources (UxVs) entities (via JDBC connection to the database)

Changes • Enhancements to the final list of functionalities supported, according
to the new requirements definition in D3.2

Table 20: Testbeds Directory Service

4.2.10 Accounting Service

Component Accounting Service
Responsible partner Fraunhofer
Parent Component None
Description Keeps track of resources usage by individual users.
Provided
functionalities

• Receive events from the other subsystems
• Count charge in Credit units per User

Relation to other
components

• Master Data Repository (JDBC)
o IN ← Perform SQL queries status of experiments
o OUT → accounting information for the users

Changes • new
Table 21: Accounting Service

4.2.11 Visualisation Engine

Component Visualisation Engine
Responsible partner Epsilon
Parent Component None
Description Used for providing the necessary information to the Visualisation tool,

to communicate with the other components, to handle geospatial data, to
retrieve data for experiments from the database, to load and store user
settings and to forward them to the visualisation tool

Provided
functionalities

• Load and store user setting to and from the database in order to have
the same settings loaded for the same experiment for a specific user

• Load data for an already finished experiment from the database,
update it and provide it to the visualisation tool

• Load data for UxVs, for sensors, for location and others for an
experiment that is currently being visualised

• Provide data for an existing experiment in appropriate format as
layers to the visualisation engine

• Retrieve real time data from the message bus, update it as necessary
and forward it to the visualisation tool

• Open websocket interface to the visualisation tool and handle all its
requests

Relation to other
components

• Visualisation Tool (via websockets)
o OUT → Load experiment settings
o OUT → Get real time data for UxVs and sensors
o OUT → Get data for experiment replay
o IN ← Store preferred user settings

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

39

• UxVs and sensors (via Message Bus)
o IN ← Get real time data for

• Master Data Repository
o IN ← SQL queries for retrieving testbed, UxV and experiment

entities from DB
Changes • New

Table 22: Visualisation Engine

4.2.12 Message Bus

Component Message Bus
Responsible partner IES
Parent Component None
Description Message Oriented Middleware used across all tiers to enable

asynchronous, event-based messaging between heterogeneous
components. Implements the Publish/Subscribe paradigm.
Different message brokers implementations and protocols for data
formatting and messaging were investigated and, as reported in D5.1,
for the implementation of the RAWFIE prototype in the first iteration,
Apache Kafka has been chosen for implementing the message bus (see
also Section 3.8).

Provided
functionalities

• Send asynchronous notifications on specific events (e.g. booking
notifications)

• Handle Publisher/Subscriber (or Publisher/Consumer) relationships
between components

• Possibility to buffer messages persistently, to ensure delivery of
messages even in case of network or system fault

• Ability to handle messages sent at various different revisions: this
prevents consumers subscribed to previous revisions from having
their components break. This allows for producer side
addition/modification of new/existing fields (correspondingly) while
not breaking consumer processes. This is added as a general concept
in the architecture as 'Schema Registry'

Relation to other
components

Being the Message Bus the main integration component in the RAWIFE
architecture, different components are involved in the communication
through the Message Bus. Details in the specific components sections

Changes • Decision to use Apache Kafka as implementation
• Relation to other components simplified

Table 23: Message Bus

4.3 Data tier

4.3.1 Master Data Repository

Component Master Data Repository
Responsible partner UOA (supported by all technical partners)
Parent Component None

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

40

Description Stores all main entities that are needed in the RAWFIE platforms.
Is an SQL-database

Provided
functionalities

• SQL interface
• Stored entities (not comprehensive)
o Testbeds (name, location, type, …)
o UxVs/resources (name, type, status, …)
o Experiments and EDL scripts
o Experiment status
o Bookings/reservations
o User settings

Relation to other
components

• IN/OUT ↔ almost all components in the Middle tier.

Changes • New, combination of Testbeds & Resources Repository, Experiments
& EDL Repository, Bookings Repository, Status Repository

Table 24: Master Data Repository

4.3.2 Users & Rights Repository

Component Users & Rights Repository
Responsible partner Fraunhofer
Parent Component None
Description Management of users and their roles. Is a directory services (LDAP).
Provided
functionalities

• LDAP interface
• Stores users and their roles (a role correspond to a group

membership)
Relation to other
components

• Users & Rights Service (LDAP)
o IN/OUT ↔ Read and update user and rights data

Changes • none
Table 25: Users & Rights Repository

4.3.3 Measurements Repository

Component Measurements Repository
Responsible partner HES-SO
Parent Component None
Description Stores the raw measurements from the experiments in HDFS (file

system). Those measurements can also be accessed in a database fashion
with HBase, the NoSQL distributed database that will run on top of
HDFS.

Provided
functionalities

• Persistent storage the raw measurements from the experiments in
HDFS for later analysis.

Relation to other
components

• UxV - Sensor & Localisation (via Message Bus)
o IN ← receive measurements

• Data Analysis Engine (via Message Bus)
o OUT [Symbol] send measurements

Changes • Split into Measurements Repository and Results Repository

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

41

• Status of experiments now stored in the Master Data repository
Table 26: Measurements Repository

4.3.4 Analysis Results Repository

Component Analysis Results Repository
Responsible partner HES-SO
Parent Component None
Description Whisper, as part of the Graphite project, is a big data time series

database that constitutes the results repository. Whisper stores the
results of data analyses and those results can be displayed via Graphite's
dashboard, called Graphite-Web.

Provided
functionalities

• Stores results of data analysis tasks
• Displays the results via Graphite's dashboard (which will be

integrated in the Data Analysis Tool)
Relation to other
components

• Data Analysis Engine (via socket)
o IN ← receive results

• Data Analysis Tool (via HTTP/HTML)
o OUT →integration of the dashboard in the Data Analysis Tool

Changes • Split into Measurements Repository and Analysis Results Repository
Table 27: Analysis Results Repository

4.4 Testbed tier

4.4.1 Testbed Manager

Component Testbed Manager
Responsible partner HAI
Parent Component None
Description Contains accumulated information about the UxVs resources and the

experiments of each one of the federation testbeds. It is responsible to
address initial resources configuration and periodic updates of testbed
on-going experiments. It supports an alternative storage path (Local
Data Repository) for logging and configuration activities which can
additionally be used for storing experiments data in case of connection
failure to the Middle Tier.

Provided
functionalities

• Contains the registration log for the experiments in the tested
• Periodically checks the status of the experiments
• Forwards the status of the experiments to the Middle Tier
• Stores configuration parameters for the UxVs in the relevant Testbed
• Buffer data in case of network connection loss to the Middle Tier.

The TM stores the last instance of each experiment as a fall back
mechanism in case that testbed loses the connection with the middle
tier. For example if there is a network problem during the execution

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

42

of the experiments, TM stores the information that would be
forwarded to the Data tier.

Relation to other
components

• Experiment Controller
o IN ← Experiment launching info and status

• System Monitoring Service
o OUT → Testbed Manager status and performance

• SFA Aggregate Manager
o IN/OUT ↔ SFA Aggregate Manager API (XML-RPC)

• Resource Controller
o IN ← Current experiment status
o IN ← UxV health status

• Local Data Repository
o IN ← UxVs configuration parameters
o IN ← Data buffer in connection loss
o IN ← Experiments log

Changes • Local Data Repository added
Table 28: Testbed Manager

4.4.2 Aggregate Manager

Component Aggregate Manager
Responsible partner UOA
Parent Component Testbed Manager
Description The SFA Aggregate Manager API is the interface by which

experimenters discover, reserve and control resources at resource
providers. See section A.2.1

Provided
functionalities

• Implements Aggregate Manager API

Relation to other
components

• Testbed Manager
o IN ← Testbed information about resources, configurations of

resources and resources capabilities
• SFA Service
o OUT → An API to discover, reserve and control resources.

Changes • Local Data Repository added

4.4.3 Monitoring Manager

Component Monitoring Manager
Responsible partner UOA
Parent Component None
Description Monitors the status of the testbed and the UxVs belonging to it, at

functional level, e.g. the ‘health of the devices’ and current activity.
Provided
functionalities

• Periodically check the current status of the available resources in the
facility like battery lifetime, CPU load, free RAM, bit error rate, etc.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

43

• Periodically check the status of the testbed facilities like weather
conditions, network connections available, etc.

• Stores the status of the testbed characteristics and the devices in a
data log.

• Transmit the current status of the Testbed and its resources to the
System Monitoring Service.

Relation to other
components

• System Monitoring Service (via Message Bus)
o OUT → testbed and resources status and performance values

Changes • added transmission of status information to the System Monitoring
Service

Table 29: Monitoring Manager

4.4.4 Network Controller

Component Network Controller
Responsible partner UOA
Parent Component None
Description Manages the network connections and the switching between different

technologies in the testbed in order to offer seamless connectivity in the
operations of the system. For example if a problem occurs in the
communication of the resource with the RC and subsequently with the
Experiment Controller on the RAWFIE middleware, a fall-back
interface is engaged. Through this procedure, the other networking
interface/device is enabled to avoid the uncontrolled operation of the
mobile unit and associated damages in the infrastructure.
In addition this component is responsible for security issues.
The switching alternative can be also triggered by the executed
experiment.

Provided
functionalities

• Provisioning of the network connections/technologies required
during an experiment

• Checks the communication when devices are moving between
obstacles

• Verification that the time constraints specified on the exchanged data
for the different types of UxVs are met.

• Sends notifications produced in message bus to Resource controller
and System Monitoring Service when the time constraints are not
met via a specific network technology.

Relation to other
components

• U-xV - Network communication
o IN ← Communication statistics and status values (via network

traffic analysis)
• Resource Controller (via Message Bus)
o OUT → notifications when network time constraints are not met

• Monitoring Manager
o OUT → notifications about network communications status

Changes • added transmission of status information to the Monitoring Manager
Table 30: Network Controller

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

44

4.4.5 Resource Controller

Component Resource Controller
Responsible partner CERTH
Parent Component None
Description The Resource Controller can be considered as a cloud robot and

automation system and ensures the safe and accurate guidance of the
UxVs. Moreover, RC commands each device to switch onboard sensors
on and off. At the same time, this component informs the Experiment
Controller for the gathered measurements of the sensors of each device.

“Launching Tool” interacts with the "Experiment Controller" to transfer
user’s preferences and instructions regarding the experiment. The
“Experiment Controller” initially, triggers the “Experiments and EDL
Repository” component and receives the user’s directions, translated in
a form of a set of waypoints. These waypoints provide basic information
about the preferable locations for each UxV. The set of the waypoints
for each robot defines the path that the experimenters have shaped. For
the navigation of a robot from its current position to the location
described by the next waypoint, the system requires a turn. The main
objective of the “Resource Controller” component (“Navigation
Service” sub-component) is to optimize the navigation process, which
takes place during a turn. The optimization algorithm is based on the
Cognitive-based Adaptive Optimization (CAO) approach. CAO
transforms the navigation problem into an optimization one, which in
every time step the goal is to optimize the location of the UxVs so to
meet the objectives of the mission with respect to a set of constraints.

In other words, this component acts as an agent/daemon and invokes
actions on the request of the experimenter. Through the module, each
resource can be made discoverable to the rest infrastructure while the
access control is also ensured. Moreover, the Resource Controller is
responsible for the dispatch of information related to the current status
of the node (i.e., energy reserves, currently active modules, location,
velocity etc.).

Resource Controller will be able to detect and identify possible safety
violations. If the given instructions violate the safety constraints, e.g.,
the experimenter guides two units at the same position, the Resource
Controller identifies and ignores these directions returning to the portal
appropriate warning messages.

Additionally, the Resource Controller ensures that the system is
performing as intended. If one of the following conditions occurs,
automatically, the component activates an emergency scenario:
• 1. The component does not receive any feedback from the units for

several time steps.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

45

• 2 The component receives feedback from the units which report
severe localization issues.

It is worth noting that Resource Controller component navigates
simultaneously all the units of the squad. It is worth noting that the time
needed for each robot to reach its desired location is not the same for all
units. Thus, the turn concludes when all the robots reach their next
location.

Provided
functionalities

• The calculation of the near-optimal path that the vehicles should
follow in order to reach the desired location.

• The translation of the operator’s/experiment instructions into a
reference scheme

• The assurance that the system is performing as intended and that the
equipment is safe.

• Publish sensor values to the Data Tier/ Monitoring Tool
Relation to other
components

• Experiment Controller (Message Bus)
o IN ← Experiment Details, start, stop and cancel instructions,

desirable trajectory etc.
• UxV Node (Message Bus)
o IN/OUT ↔ Sends the desirable location and receives the actual

position of the vehicles
Changes • none

Table 31: Resource Controller

4.4.6 UxV node

Component UxV node
Responsible partner CSEM (MST, Robotnik)
Parent Component None
Description A single UxV node. The UxV is a complete mobile system that interacts

with the other Testbed entities. It can be remotely controlled or able to
act and move autonomously

Provided
functionalities

UxVs typically include the following unordered and non-exhaustive list
of functions and services: Physical interfaces to vehicle actuators and
sensors
Network connection
• Data acquisition
• Data storage
• Data pre-processing (aggregation, fusion, etc.)
• Data management, representation, transfer, etc.
• Local time reference and time stamping service
• Location reference and geo-tagging service (location retrieval,

coordinate management)
• Navigation and autonomous control (involves an internal

representation of its environment, map, location awareness, path
planning, obstacle avoidance, waypoint management, hazard

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

46

management), decision-making service.
• Remote control interface
• Status of the UxV (attitude-inertial measurement unit, energy, speed,

sanity, mode, etc.)
• Identification, transponding, friend or foe

Payload status
• Etc.
The specific component that allows the UxV for interacting with the
Testbed and its constituents is making use of several of the above
function and services. It will feed the Testbed experiment database with
collected data, recorded events, flight information, etc.) and it will be
fed with the instructions and commands corresponding to the mission it
is assigned to in the context of the experiment. It may offer a relay
platform for other Testbed components to transfer data to the ground
control and experiment control.

Relation to other
components

• Resource Controller
o IN ← Provides resources to other components, Provides status on

its internal resources.
o OUT → Requests external resources.

• UxV – On board processing
o OUT → Data collected from sensor (samples).
o IN ← Results of local data processing.

• UxV – On board storage (buffering)
o IN ← Data retrieved from local storage.
o OUT → Data to be stored in local storage.

• Data Tier
o OUT → Provides measurement to the Measurements Repository.
o OUT → Provides status and various statistics to the Master Data

repositories.
• Sensors & Localization
o OUT → status & samples (with tagging information, such as

timestamp), events.
o IN ← sampling configuration, commands (start, stop, hold,

individual sampling, etc.)
• Experiment controller
o OUT → Provide status and geographical information about the

UxV.
• System monitoring
o IN ← requests for information.
o OUT → Events, status, geographical & other UxV specific

information (speed, altitude, etc.)
Changes • Relation to other components

Table 32: UxV node

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

47

4.4.7 UxV - Network communication

Component UxV - Network communication
Responsible partner CSEM
Parent Component UxV node
Description Provides communication services to the UxV

These services form the basis for the other services to interact with the
UxV (basically all features listed in the UxV node.

Provided
functionalities

• Identification service
• Data transfer service
• Status notification
• Capabilities and directory services
• Reconfiguration

Relation to other
components

• Network Controller
o IN ← Request communication resources (such as bandwith) or

other Quality of Service.
o OUT → Provides communication status and statistics.
o

Changes • Relation to other components
Table 33: UxV - Network communication

4.4.8 UxV – Sensors & Localization

Component UxV – Sensors & Localization
Responsible partner CSEM (MST, Robotnik)
Parent Component UxV node
Description • Provides interfaces to different s installed on the UxVsensor
Provided
functionalities

Sensors are providing the application with measurement points,
typically tuples made of a location a timestamp, a source sensor and one
or several samplings.
Localisation is a specific type of measurement using positioning
systems or a combination of measurements to estimate a location.

• Estimated position of the UxV and collected data
• Sensors (fixed and mountable)
• Raw data acquisition

Relation to other
components

• UxV
o OUT → status & samples (with tagging information, such as

timestamp), events.
o IN ← sampling configuration, commands (start, stop, hold,

individual sampling, etc.)
o

Changes • Relation to other components
Table 34: UxV – Sensors & Localization

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

48

4.4.9 UxV – On board storage

Component UxV – On board storage
Responsible partner CSEM (MST, Robotnik)
Parent Component UxV node
Description • Provides storage of data inside the UxV
Provided
functionalities

• The UxV embeds some storage to store data. Typically, the data
corresponds to measurements that cannot be sent over the
communication link to the testbed manager

• Status UxV information produced during an experiment will be
internally stored for later UxV maintenance

Relation to other
components

• UxV
o OUT → Data retrieved from local storage.
o IN ← Data to be stored in local storage.

Changes • Relation to other components
Table 35: UxV – On board storage

4.4.10 UxV – On board processing

Component UxV – On board processing
Responsible partner CSEM (MST, Robotnik)
Parent Component UxV node
Description • Provides processing of data inside the UxV
Provided
functionalities

• The UxV is able to process the sampled data produced by its sensors
or other information it has received through the communication links
to either increase the information level or compress the data elements
into more concise or aggregated forms, such as compressed format,
spectrographic analysis, averages, FFT, etc.

Relation to other
components

• UxV – On board storage (buffering)
o OUT → Data retrieved from local storage.
o IN ← Data to be stored in local storage.

Changes • Relation to other components
Table 36: UxV – On board processing

4.4.11 UxV – Device management

Component UxV – Device management
Responsible partner CSEM
Parent Component UxV node
Description • Provides network and sensor management for the UxV
Provided
functionalities

• Network connection to the base state
• Ad-hoc networks
• Device sensor controlling

Relation to other
components

• Network controller
o IN ← Communication configuration & quality of service

management.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

49

o OUT → Communication Status & Statistics.
• Resource controller
o IN ← Resource reservation requests & configuration.
o OUT → Resource reservation response & status.

Changes • Relation to other components
Table 37: UxV – Device management

5 Requirement mapping
A simple requirement mapping to components was already given in D3.2.

This chapter shows how the system level requirements (“general” ones from D3.2) are addressed
with the current architecture. The component specific requirement will be handled in D4.5.

• PT-GEN-R-001: RAWFIE Platform should adopt Sliced Federated Architecture
(SFA)

o A SFA service will be develop that implements the SFA interface. So user may
also access some RAWFIE services via SFA

• PT-GEN-R-002: RAWFIE platform shall support various roles with different
privileges at every level of access.

o The User & Rights Service manages a set of roles for each user. Each role stands
for a privilege. The other RAWFIE component have to ask the User & Rights
Service, if the given user has the appropriate role to execute the requested
operation.

• PT-GEN-R-003: The RAWFIE Data model should include all basic entities that are
used or/and exchanged by the various components of the RAWFIE Platform

o All main entities are now in the Master Data repository (users are separated in an
LDAP server, but their unique IDs are used in the Master Data repository). It only
contains a single relational database schema. Full SQL query capabilities are
provided to all Middle Tier components.

• PT-GEN-R-004: RAWFIE platform shall provide appropriate data storage for
persistent information that needs to be reused later

o The Data Tier consists of three different specialized repositories. OpenDJ
(Directory Server) for user data, PostgreSQL for the master data and
HDFS/HBase for the potential huge amounts of measurements. See also section
3.5.

• TB-GEN-R-001: Each UxV Testbed should provide a Slice Interface for federating
their capabilities/resources to the experimenter.

o Testbeds need to implement the required the SFA Aggregate Manager Interface
prescribed for FIRE compatible testbeds (as described in section 3.6)

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

50

• TB-GEN-R-002: Each Testbed should provide the exact boundaries within which its
UxVs can operate

o This data is stored in the Master Data repository and will be evaluated by the
Experiment Validation Service

o In the testbed themselves, the navigation service in the Resource Controller will
also check if the boundaries are obeyed.

• TB-GEN-R-003: Testbed areas should at least be able to host/operate multiple UxVs
of one or more types

o Physical implementation is out of scope of the architecture
o On the software side, each testbed can have an unlimited amount of UxVs (if

appropriate computing power is available)
• TB-GEN-R-004: Testbed areas environment should be closely monitored

o Out of scope of the architecture
• TB-GEN-R-005: Indoor spaces of a testbed should provide a shielded indoor

environment
o Out of scope of the architecture

• TB-GEN-R-006: Testbed facility areas should comprise storing spaces and be able
to receive inspect and assemble and/or fix UxVs

o Out of scope of the architecture
• TB-GEN-R-007: Testbed facilities should provide dedicated services for emergency

situations.
o Out of scope of the architecture

• TB-GEN-R-008: Testbed areas should provide proper facilities and equipment
o Out of scope of the architecture

• TB-GEN-R-009: Testbed must provide dedicated computational resources
o This is a mandatory requirement that a testbed has to fulfil. See section 3.7.2.

• TB-GEN-R-010: Testbeds should be supported by on-site personnel
o Out of scope of the architecture

• TB-GEN-R-011: Testbeds should conform to all legal regulations and restrictions
o Out of scope of the architecture

• TB-UVG-001: Compliance of UxV to RAWFIE specification and interfaces
o This is a mandatory requirement that an UxV has to fulfil. See 3.7.3.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

51

Part V: Annex

Annex A Relevant technologies
In this chapter additional technologies that extent the State of the Art chapter of D4.1 are
described.

A.1 HDFS
HDFS (Hadoop Distributed File System) is a Java-based file system that provides scalable and
reliable data storage, and it was designed to span large clusters of commodity servers. HDFS is a
scalable, fault-tolerant, distributed storage system that works closely with a wide variety of
concurrent data access applications. By distributing storage and computation (data analysis
computations) across many servers, the combined storage resource can grow linearly with
demand while remaining economical at every amount of storage.

HDFS features:

• Considers a node’s physical location when allocating storage and scheduling tasks. (Rack
awareness, data locality)

• Dynamically diagnose the health of the file system and rebalance the data on different
nodes.

• Provides redundancy and supports high availability.
• HDFS requires minimal operator intervention, allowing a single operator to maintain a

cluster of 1000s of nodes.

An HDFS cluster is comprised of a NameNode, which manages the cluster metadata, and
DataNodes that store the data. Files and directories are represented on the NameNode by inodes.
Inodes record attributes like permissions, modification and access times, or namespace and disk
space quotas.

The data is split into large blocks (typically 128 megabytes), and each block is independently
replicated at multiple DataNodes. The blocks are stored on the local file system on the
DataNodes.

The Namenode actively monitors the number of replicas of a block. When a replica of a block is
lost due to a DataNode failure or disk failure, the NameNode creates another replica of the block.
The NameNode maintains the namespace tree and the mapping of blocks to DataNodes, holding
the entire namespace image in RAM.

HDFS, as a core module of the Hadoop framework, enables compatibility with a wide range of
Hadoop-related tools, known as the Hadoop ecosystem, that can be installed on top of or

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

52

alongside Hadoop to simplify access and processing of data stored in the Hadoop cluster.
(Descriptive list of those projects at: https://hadoopecosystemtable.github.io).

To only mention the most relevant for the project's purposes:

• Apache Spark: In-memory cluster computing framework used for fast batch processing,
event streaming and interactive queries. It is the successor of the Hadoop MapReduce
programming model for large scale data processing, which is, like HDFS, a core module
of the Hadoop framework. Spark is used by the Data Analysis Engine to perform the data
analytical tasks. HDFS is also used by Spark for checkpointing, which is the process of
truncating RDD (resilient distributed dataset) lineage graph and saving it to a reliable
distributed file system.

• Apache HBase: Open source NoSQL distributed database. It runs on top of HDFS and
its column-based behavior benefits from the parallelism and distributed behavior
provided by HDFS.

A.2 SFA APIs
This section describes the mandatory SFA APIs that will be implemented in the RAWFIE
system.

A.2.1 Aggregate Manager API

The Aggregate Manager API is the interface by which experimenters discover, reserve and
control resources at resource providers. It does not include resource specific interactions,
application level interactions, or monitoring and management functions. Three versions of AM
API exist at the moment as AM API v1, 2 and 3, while a 4th version is in a draft state.

The latest stable version of the AM is the GENI AM API v3. A brief description of the methods
of it is given in Table 38 as it is defined in [11].

Methods Functionality
GetVersion Query static configuration information about this aggregate manager

implementation, such as API and RSpec versions supported. Get static
version and configuration information about this aggregate. Return includes:
• List of versions of the API supported by this aggregate.
• List of request RSpec formats supported by this aggregate
• List of advertisement RSpec formats supported by this aggregate.
• List of supported credential types and versions.
• Options on how sliver allocation works.

ListResources

Return a listing and description of available resources at this aggregate. The
resource listing and description provides sufficient information for clients to
select among available resources. These listings are known as advertisement
RSpecs.

Describe Retrieve a manifest RSpec describing the resources contained by the named

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

53

entities, e.g. a single slice or a set of the slivers in a slice. This listing and
description should be sufficiently descriptive to allow experimenters to use
the resources.

Allocate Allocate resources as described in a request RSpec argument to a slice with
the named Uniform Resource Name (URN). On success, one or more slivers
are allocated, containing resources satisfying the request, and assigned to the
given slice. This method returns a listing and description of the resources
reserved for the slice by this operation, in the form of a manifest RSpec.
Allocated slivers are held for an aggregate-determined period. Clients must
Renew or Provision slivers before the expiration time (given in the return
struct), or the aggregate will automatically Delete them. Aggregates should
implement Allocate() as quick, cheap, and not impacting provisioned
resources, such that it can be readily undone. Allocate is an all or nothing
request: if the aggregate cannot completely satisfy the request RSpec, it
should fail the request entirely.

Renew Request that the named slivers be renewed, with their expiration extended. If
possible, the aggregate should extend the slivers to the requested expiration
time, or to a sooner time if policy limits apply. This method applies to
slivers that are geni_allocated or to slivers that are geni_provisioned,
though different policies may apply to slivers in the different states, resulting
in much shorter max expiration times for geni_allocated slivers.

Provision Request that the named geni_allocated slivers be made
geni_provisioned, instantiating or otherwise realizing the resources, such
that they have a valid geni_operational_status and may possibly be
made geni_ready for experimenter use. This operation is synchronous, but
may start a longer process, such as creating and imaging a virtual machine.

Status

Get the status of a sliver or slivers belonging to a single slice at the given
aggregate. Status may include other dynamic reservation or instantiation
information as required by the resource type and aggregate. This method is
used to provide updates on the state of the resources after the completion of
Provision, which began to asynchronously provision the resources. This
should be relatively dynamic data, not descriptive data as returned in the
manifest RSpec.

Perform
Operational
Action

Perform the named operational action on the named slivers, possibly
changing the geni_operational_status of the named slivers. E.G. 'start' a VM.
For valid operations and expected states, consult the state diagram advertised
in the aggregate's advertisement RSpec.

Delete Delete the named slivers, making them geni_unallocated. Resources are
stopped if necessary, and both de-provisioned and de-allocated. No further
AM API operations may be performed on slivers that have been deleted.

Shutdown Perform an emergency shutdown on the slivers in the given slice at this
aggregate. Resources should be taken offline, such that experimenter access
(on both the control and data plane) is cut off. No further actions on the
slivers in the given slice should be possible at this aggregate, until an un-
specified operator action restores the slice's slivers (or deletes them). This

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

54

operation is intended for operator use. The slivers are shut down but remain
available for further forensics.

Table 38: GENI Aggregate Manager API Version 2

A detail description of the methods provided by the AM APIs can be found in [12].

A.2.2 Registry API

A Registry is a trusted body that issues certificates to users or authorities and is organized in a
tree-based hierarchical naming space. The Registry API is used by the users and authorities in
order to be part of a trusted federation. A synopsis of the Registry AP [15] methods is shown in
Table 39.

Method Functionality
GetVersion Get static version and configuration information about this Registry. Return

includes:
• The version of the Registry API supported
• The root authority HRN of this Registry
The URL's of the peers root authorities

Register Registers an object (Authority, User, Slice) with the registry
Update Updates an object (Authority, User, Slice) in the registry
Remove Removes an object (Authority, User, Slice) from the registry
Resolve Used to learn the detailed information bound to a Registry object (Authority,

User, Slice)
List Lists the set of Registry objects (Authority, User, Slice) managed by the

named Authority
GetSelfCredential A degenerate version of GetCredential used by the client to get his initial

credential when he doesn’t have one.
GetCredential Retrieves the credentials corresponding to the named object (Authority,

User, Slice)
CreateGid Creates a signed certificate for the object with the registry

Table 39: Registry API

Annex B Abbreviations
The following table gives the abbreviations used across the RAWFIE projects in the documents
and deliverables.

Abbreviation Meaning
3D three-dimensional space
ACL Access Control List
AGL Above Ground Level
AHRS Attitude and Heading Reference System
AJAX Asynchronous JavaScript and XML
AM Aggregate Manager (of SFA)
AP Access Point

http://en.wikipedia.org/wiki/Attitude_and_heading_reference_system

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

55

API Application Programming Interface
API Application programming interface
AT Aerial Testbed
AUV Autonomous underwater vehicle
B-VLOS Beyond Visual Line Of Sight
CA Certification Authority
CAA Civil Aviation Authority
CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological
CEP Circular Error Probability
CPU Central Processing Unit
CSR Certificate Signing Request
DETEC Department of the Environment, Transport, Energy and Communication
DGCA Directorate General of Civil Aviation
DoA Description of Actions
EASA European Aviation Safety Agency
EC Experiment Controller
ECC Error Correction Code
ECV EDL Compiler & Validator
EDL Experiment Description Language
EDL Experiment Description Language
EER Experiment and EDL Repository
EU European Union
E-VLOS Extended Visual Line Of Sight
EVS Experiment Validation Service
FIRE Future Internet Research & Experimentation
FOCA Federal Office of Civil Aviation
FPS Frames Per Second
FPV First Person View
GAA German Aviation Act
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPIO General Purpose Input/Output
GPS Global Positioning System
GUI Graphical user interface
HD High Definition
HTTP Hypertext Transfer Protocol
HW Hardware
IAA Irish Aviation Authority
IaaS Infrastructure as a Service
IDE Integrated Development Environment
IDE integrated development environment
IFR Instrument Flight Rules
IP Internet Protocol
ISO International Standards Organization
JDBC Java Database Connectivity
JSON JavaScript Object Notation
KPI Key Performance Indicator
KPI Key Performance Indicator

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

56

LBL Long Baseline
LDAP Lightweight Directory Access Protocol
LS Launching Service
MEMS MicroElectroMechanical System
MM Monitoring Manager
MSO Multi Swarm Optimization
MT Maritime Testbed
MOM Message Oriented Middleware
MVC Model View Controller
NAT Network Address Translation
NC Network Controller
NF Non Functional
ODBC Open Database Connectivity
OEDL OMF EDL
OMF cOntrol and Management Framework
OMF Orbit Management Framework
OML ORBIT Measurement Library
OS Operating System
OTA Over The Air
P2P Point to Point
PSO Particle Swarm Optimization
PTZ Pan Tilt Zoom
RC Resource Controller
RC Resource Controller
RE Requirement Engineering
REST Representational state transfer
RIA Research and Innovation Action
ROS Robot Operating System
ROV Remotely Operated Vehicle
RPA Remotely Piloted Aircraft
RPAS Remotely Piloted Aircraft System
RPS Remotely Piloted Station
RSpec SFA Resource Specification
SaaS Software as a Service
SAML Security Assertion Markup Language
SFA Slice-based Federation Architecture
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Simple Query Language
SSO Single-Sign-On
SVN Apache Subversion
TM Testbed Manager
TMS Testbed Manager Suite
TP Testbed Proxy
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UI User Interface
UML Unified Modelling Language
USV Unmanned Surface Vehicle

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

57

UUV Unmanned Underwater Vehicle
UxV Unmanned aerial/ground/surface/underwater Vehicle
VE Visualization Engine
VT Vehicular Testbed
VT Visualization Tool
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
WPS Web Processing Service
WSDL Web Services Description Language
XMPP Extensible Messaging and Presence Protocol

Table 40: Common abbreviations

The following table gives the notations used in the RAWFIE documents and deliverables.

Notation Description
DX.Y Deliverable X.Y from the DoW
MSX Milestone X from the DoW
WPX Work package X from the DoW
OCX Open Call X
AX.Y Activity number Y in Phase X
DLX.Y Deadline number Y in Phase X
MX Project month number X

Table 41: Notation

Annex C Glossary
The RAWFIE glossary is made of generic terms, contributed by all partners.

A
Accounting Service

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager
SFA term. The Aggregate Manager API is the interface by which experimenters discover,
reserve and control resources at resource providers.

Avro
Apache Avro: a remote procedure call and data serialization framework

B

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

58

Booking Service
RAWFIE component. The Booking Service manages bookings of resources by registering
data to appropriate database tables.

Booking Tool
RAWFIE component. The Booking tool will provide the appropriate Web UI interface for the
experimenter to discover available resources and reserve them for a specified period.

C
Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed provider
should ensure, for the communication with Middle Tier software components of RAWFIE,
therefore for the integration with the RAWFIE platform

Component
A reusable entity that provides a set of functionalities (or data) semantically related. A
component may encapsulate one or more modules (see definition) and should provide a well
defined API for interaction

D
Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing
jobs by sending requests to a processing engine which will perform the computations
specified when the analytical task was defined through the Data Analysis Tool to be
transmitted to the processing engine for execution.

Data Analysis Tool
RAWFIE component. The Data Analysis Tool enables the user to browse available data
sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E
EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and
semantic analysis on the provided EDL scripts.

Experiment Authoring Tool

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

59

RAWFIE component. This component is actually a collection of tools for defining
experiments and authoring EDL scripts through RAWFIE web portal. It will provide features
to handle resource requirements/configuration, location/topology information, task description
etc.

Experiment Controller
RAWFIE component. The Experiment Controller is a service placed in the Middle tier and is
responsible to monitor the smooth execution of each experiment. The main task of the
experiment controller is the monitoring of the experiment execution while acting as ‘broker’
between the experimenter and the resources.

Experiment Monitoring Tool
RAWFIE component. Shows the status of experiments and of the resources used by
experiments.

Experiment Validation Service
RAWFIE component. The Experiment Validation Service will be responsible to validate
every experiment as far as execution issues concern.

M
Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the RAWFIE
platforms. Is an SQL-database

Measurements Repository
RAWFIE component. Stores the raw measurements from the experiments

Message Bus
Also known as Message Oriented Middleware. A message bus is supports sending and
receiving messages between distributed systems. It is used in RAWFIE across all tiers to
enable asynchronous, event-based messaging between heterogeneous components.
Implements the Publish/Subscribe paradigm.

Module
A set of code packages within one software product that provides a special functionality

Monitoring Manager
RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at
functional level, e.g. the ‘health of the devices’ and current activity.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

60

N
Network Controller

Manages the network connections and the switching between different technologies in the
testbed in order to offer seamless connectivity in the operations of the system.

L
Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for starting
or cancellation of experiments.

R
Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and
automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool
RAWFIE component. The experimenter can discover and select available testbeds as well as
resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository
RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)
SFA term. This is the means that the SFA uses for describing resources, resource requests,
and reservations (declaring which resources a user wants on each Aggregate).

S

Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added
benefit each schema has versions with it can convert allowable formats to other ones (e.g.:
float to double) It maintains schemas for the data transferred and keeps revisions to be able to
upgrade the definitions as with the simple field conversion. Used in RAWFIE for messages on
the message bus.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

61

Service
A component that is running in the system, providing specific functionalities and accessible
via a well known interface.

Slice Federation Architecture (SFA)
SFA is the de facto standard for testbed federation and is a secure, distributed and scalable
narrow waist of functionality for federating heterogeneous testbeds.

Subsystem
A collection of components providing a subset of the system functionalities.

System
A collection of subsystems and/or individual components representing the provided software
solution as a whole.

System Monitoring Service
RAWFIE component. Checks readiness of main components and ensure that all critical
software modules will perform at optimum levels. Predefined notification are triggered
whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool
RAWFIE component. Shows the status and the readiness of the various RAWFIE services
and testbed

T
Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific
theories, computational tools, and new technologies.

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where
UxVs can move around to execute some experiments. In addition, the UxVs are stored in or
near the testbed.

Testbeds Directory Service
RAWFIE component. Represents a registry service of the middleware tier where all the
integrated testbeds and resources accessible from the federated facilities are listed, belonging
to the RAWFIE federation.

Testbed Manager
RAWFIE component. Contains accumulated information about the UxVs resources and the
experiments of each one of the federation testbeds.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

62

Tool
A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search for a
resource

U
Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services (LDAP).

Users & Rights Service
RAWFIE component. Manages all the users, roles and rights in the system.

UxV
The generic term for unmanned vehicle. In RAWFIE, it can be either:

USV Unmanned Surface vehicle.

UAV Unmanned Aerial vehicle.

UGV Unmanned Ground vehicle.

UUV Unmanned Underwater vehicle.

UxV Navigation Tool
RAWFIE component. This component will provide to the user the ability to (near) real-time
remotely navigate a squad of UxVs.

UxV node
RAWFIE component. A single UxV node. The UxV is a complete mobile system that
interacts with the other Testbed entities. It can be remotely controlled or able to act and move
autonomously.

V
Visualisation Engine

RAWFIE component. Used for providing the necessary information to the Visualisation tool,
to communicate with the other components, to handle geospatial data, to retrieve data for
experiments from the database, to load and store user settings and to forward them to the
visualisation tool.

Visualisation Tool
RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of
experiments that are already finished

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

63

W
Web Portal

RAWFIE component. The central user interface that provides access to most of the RAWFIE
tools/services and available documentation.

Wiki Tool
RAWFIE component. Provides documentation and tutorials to the users of the platform.

 D4.4 - High Level Design and Specification of RAWFIE Architecture (2nd version)

64

References

[1] Reference Model for Service Oriented Architecture 1.0,Committee Specification 1,
2 August 2006 - http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-
rm

[2] Apache Avro - http://avro.apache.org/
[3] Avro RPC Quick Start - https://github.com/phunt/avro-rpc-quickstart
[4] Apache Kafka homepage - http://kafka.apache.org/
[5] A Relational Database Overview, oracle.com -

https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
[6] PostgreSQL homepage: http://www.postgresql.org/
[7] Directory Services (LDAP), oracle.com -

http://docs.oracle.com/cd/A87860_01/doc/ois.817/a83729/adois09.htm
[8] OpenDJ hompage - http://opendj.forgerock.org/
[9] PostgreSQL-Wiki: Replication, Clustering, and Connection Pooling,-

https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
[10] OpenDJ Administration Guide: Chapter 9: Managing Data Replication -

https://backstage.forgerock.com/#!/docs/opendj/2.6/admin-guide/chap-replication
[11] GENI Aggregate Manager API Version 3 -

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
[12] GENI Aggregate Manager API - http://groups.geni.net/geni/wiki/GAPI_AM_API
[13] Hadoop WebHDFS REST API - http://hadoop.apache.org/docs/r2.7.2/hadoop-project-

dist/hadoop-hdfs/WebHDFS.html
[14] Hadoop - http://hadoop.apache.org/
[15] Fed4FIRE: D5.1 - http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D5-

1_Fed4FIRE_Detailed_specifications_for_first_cycle_ready.pdf
[16] Kafka Security - http://docs.confluent.io/2.0.0/kafka/security.html
[17] Graphite - http://graphite.wikidot.com/
[18] Whisper http://graphite.readthedocs.io/en/latest/whisper.html
[19] Messaging Bridge, from Enterprise Integration Patterns, Gregor Hohpe and Bobby

Woolf, Addison-Wesley 2013
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingBridge.html

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://avro.apache.org/
https://github.com/phunt/avro-rpc-quickstart
http://kafka.apache.org/
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
http://www.postgresql.org/
http://docs.oracle.com/cd/A87860_01/doc/ois.817/a83729/adois09.htm
http://opendj.forgerock.org/
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://backstage.forgerock.com/
http://groups.geni.net/geni/wiki/GAPI_AM_API
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/
http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D5-1_Fed4FIRE_Detailed_specifications_for_first_cycle_ready.pdf
http://www.fed4fire.eu/fileadmin/documents/public_deliverables/D5-1_Fed4FIRE_Detailed_specifications_for_first_cycle_ready.pdf
http://docs.confluent.io/2.0.0/kafka/security.html
http://graphite.wikidot.com/
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingBridge.html

	Part II: Table of Contents
	List of Figures
	List of Tables

	Part III: Executive Summary
	Part IV: Main Section
	1 Introduction
	1.1 Scope and overview of D4.4
	1.2 Relation to other deliverables

	2 Overview of changes
	3 Architectural Overview
	3.1 Components integration
	3.2 Real-time constraints and impacts in the architecture
	3.2.1 Rationale
	3.2.2 Approach
	3.2.3 Techniques
	3.2.4 Benchmarking and dimensioning

	3.3 Front-end Tier
	3.4 Middle Tier
	3.5 Data Tier
	3.6 SFA interface and service
	3.7 Testbed Tier
	3.7.1 Common Testbed Interface
	3.7.2 Constraints for testbed integration
	3.7.3 Constraints for UxV integration

	3.8 Message Bus

	4 Components Overview
	4.1 Front end tier
	4.1.1 Web Portal
	4.1.2 Wiki Tool
	4.1.3 Resource Explorer Tool
	4.1.4 Booking Tool
	4.1.5 Experiment Authoring Tool
	4.1.6 Experiment Monitoring Tool
	4.1.7 System Monitoring Tool
	4.1.8 UxV Navigation Tool
	4.1.9 Visualisation Tool
	4.1.10 Data Analysis Tool

	4.2 Middle Tier
	4.2.1 EDL Compiler & Validator
	4.2.2 Experiment Validation Service
	4.2.3 Users & Rights Service
	4.2.4 Booking Service
	4.2.5 Launching Service
	4.2.6 Experiment Controlle
	4.2.7 Data Analysis Engine
	4.2.8 System Monitoring Service
	4.2.9 Testbeds Directory Service
	4.2.10 Accounting Service
	4.2.11 Visualisation Engine
	4.2.12 Message Bus

	4.3 Data tier
	4.3.1 Master Data Repository
	4.3.2 Users & Rights Repository
	4.3.3 Measurements Repository
	4.3.4 Analysis Results Repository

	4.4 Testbed tier
	4.4.1 Testbed Manager
	4.4.2 Aggregate Manager
	4.4.3 Monitoring Manager
	4.4.4 Network Controller
	4.4.5 Resource Controller
	4.4.6 UxV node
	4.4.7 UxV - Network communication
	4.4.8 UxV – Sensors & Localization
	4.4.9 UxV – On board storage
	4.4.10 UxV – On board processing
	4.4.11 UxV – Device management

	5 Requirement mapping
	Part V: Annex
	Annex A Relevant technologies
	A.1 HDFS
	A.2 SFA APIs
	A.2.1 Aggregate Manager API
	A.2.2 Registry API

	Annex B Abbreviations
	Annex C Glossary
	References

